参考文献
[1]YANG Q,LIU Y,CHEN T,et al.Federated machine learning:Concept and applications[A/OL].arXiv.org(2019-02-13).http://arxiv.org/abs/1902.04885.
[2]Federated AI Technology Enabler(FATE)[A/OL].WeBank AI Department(2020-03-07).https://github.com/FederatedAI/FATE.
[3]IEEE P3652.1-Guide for Architectural Framework and Application of Federated Machine Learning[A/OL].IEEE Standards(2020-02-18).https://standards.ieee.org/project/3652_1.html.
[4]POUYANFAR S,SADIQ S,YAN Y,et al.A survey on deep learning:lgorithms,techniques,and applications[J].ACM Computing Surveys,2019,51(5):1-36.
[5]YU W,HATCHER W G.A survey of deep learning:Platforms,applications and emerging research trends[J].IEEE Access,2018,6:24411-24432.
[6]GOODFELLOW I,COURVILLE A,BENGIO Y.Deep Learning[M]:MIT Press,2016.
[7]Trask A W.Grokking Deep Learning[M]:Manning Publications,2019.
[8]HARTMANN F.Federated learning[A/OL].GitHub(2018-05-09).https://florian.github.io/federated-learning/.
[9]The official GDPR website[A/OL].EU Commission(2020-03-07).https://ec.europa.eu/commission/priorities/justice-and-fundamental-rights/data-protection/2018-reform-eu-data-protection-rules_en.
[10]Data protection laws of the world:Full handbook[A/OL].DLA Piper(2020-03-07).https://www.dlapiperdataprotection.com/.
[11]Federated Learning White Paper V1.0[A/OL].WeBank AI Department(2018-09-15).https://aisp-1251170195.cos.ap-hongkong.myqcloud.com/fedweb/1552917186945.pdf.
[12]MCMAHAN H B,MOORE E,RAMAGE D,et al.Communication-efficient learning of deep networks from decentralized data[A/OL].arXiv.org(2016-02-28).https://arxiv.org/abs/1602.05629.
[13]MCMAHAN H B,MOORE E,RAMAGE D,et al.Federated learning of deep networks using model averaging[A/OL].arXiv.org(2017-02-28).https://arxiv.org/abs/1602.05629v3.
[14]KONECNY J,MCMAHAN H B,YU F X,et al.Federated learning:Strategies for improving communication efficiency[A/OL].arXiv.org(2017-10-30).http://arxiv.org/abs/1610.05492.
[15]KONECNY J,MCMAHAN H B,RAMAGE D,et al.Federated optimization:Distributed machine learning for on-device intelligence[A/OL].arXiv.org(2016-10-08).http://arxiv.org/abs/1610.02527.
[16]HARTMANN F.Federated learning[A/OL].Free University of Berlin(2018-08-20).https://www.mi.fu-berlin.de/inf/groups/ag-ti/theses/download/Hartmann_F18.pdf.
[17]LIU Y,YANG Q,CHEN T,et al.Tutorial on federated learning and transfer learning for privacy,security and confidentiality[C].In Proc.of the 33rd AAAI Conference on Artificial Intelligence(AAAI'19),2019.
[18]YANG T,ANDREW G,EICHNER H,et al.Applied federated learning:Improving Google keyboard query suggestions[A/OL].arXiv.org(2018-12-07).http://arxiv.org/abs/1812.02903.
[19]HARD A,RAO K,MATHEWS R,et al.Federated learning for mobile keyboard prediction[A/OL].arXiv.org(2019-02-28).http://arxiv.org/abs/1811.03604.
[20]CRAMER R,DAMGARD I,NIELSEN J B.Multiparty computation from threshold homomorphic encryption[C].In Proc.of the International Conference on the Theory and Application of Cryptographic Techniques:Advances in Cryptology(EUROCRYPT'01),2001.
[21]DAMGARD I,NIELSEN J B.Universally composable efficient multiparty computation from threshold homomorphic encryption[C].In Proc.of Advances in Cryptology(CRYPTO'03),2003.
[22]ZHAO Y,LI M,LAI L,et al.Federated learning with non-IID data[A/OL].arXiv.org(2018-06-02).http://arxiv.org/abs/1806.00582.
[23]SATTLER F,WIEDEMANN S,MULLER K,et al.Robust and communication-efficient federated learning from non-IID data[A/OL].arXiv.org(2019-03-07).http://arxiv.org/abs/1903.02891.
[24]VAN LIER S.Robustness of federated averaging for non-iid data[A/OL].Radboud University(2018-08-21).https://www.cs.ru.nl/bachelors-theses/2018/Stan_van_Lier__4256166___Robustness_of_federated_averaging_for_non-IID_data.pdf.
[25]BHAGOJI A N,CHAKRABORTY S,MITTAL P,et al.Analyzing federated learning through an adversarial lens[A/OL].arXiv.org(2019-11-25).http://arxiv.org/abs/1811.12470.
[26]HAN B.An overview of federated learning[A/OL].Medium(2019-03-31).https://medium.com/datadriveninvestor/an-overview-of-federated-learning-8a1a62b0600d.
[27]KAIROUZ P,MCMAHAN H B,AVENT B,et al.Advances and Open Problems in Federated Learning[A/OL].arXiv.org(2019-12-10).https://arxiv.org/abs/1912.04977.
[28]RASKAR O,GUPTA R.Distributed learning of deep neural network over multiple agents[J].Journal of Network and Computer Applications,2018,116:1-8.
[29]VEPAKOMMA P,SWEDISH T,RASKAR R,et al.No peek:A survey of private distributed deep learning[A/OL].arXiv.org(2018-12-08).http://arxiv.org/abs/1812.03288.
[30]VEPAKOMMA P,GUPTA O,SWEDISH T,et al.Split learning for health:Distributed deep learning without sharing raw patient data[C].In Proc.of ICLR Workshop on AI for social good,2019.
[31]YANG W,FANG B.Privacy preserving decision tree learning over vertically partitioned data[C].In Proc.of IEEE International Conference on Computer Science and Software Engineering,2008.
[32]MOHASSEL P,ZHANG Y.SecureML:A system for scalable privacy-preserving machine learning[C].In Proc.of Symposium on Security and Privacy(SP'17),2017.
[33]XU K,YUE H,GUO L,et al.Privacy-preserving machine learning algorithms for big data systems[C].In Proc.of the 35th international conference on distributed computing systems,2015.
[34]VAIDYA J,CLIFTON C.Privacy preserving naive bayes classifier for vertically partitioned data[C].In Proc.of the SIAM International Conference on Data Mining,2004.
[35]PHONG L T,AONO Y,HAYASHI T,et al.Privacy-preserving deep learning via additively homomorphic encryption[J].IEEE Transactions on Information Forensics and Security,2018,13(5):1333-1345.
[36]PHONG L T.Privacy-preserving stochastic gradient descent with multiple distributed trainers[C].In Proc.of the 11th International Conference on Network and System Security(NSS'17),2017.
[37]LIU M,JIANG H,CHEN J,et al.A collaborative privacy-preserving deep learning system in distributed mobile environment[C].In Proc.of the 2016 International Conference on Computational Science and Computational Intelligence(CSCI'16),2016.
[38]MELIS L,SONG C,CRISTOFARO E D,et al.Exploiting unintended feature leakage in collaborative learning[A/OL].arXiv.org(2018-11-01).https://arxiv.org/abs/1805.04049.
[39]ZHANG D,CHEN X,WANG D,et al.A survey on collaborative deep learning and privacy-preserving[C].In Proc.of the 3rd International Conference on Data Science in Cyberspace(DSC'18),2018.
[40]HITAJ B,ATENIESE G,PEREZCRUZ F.Deep models under the GAN:information leakage from collaborative deep learning[C].In Proc.of the 2017 ACM SIGSAC Conference on Computer and Communications Security,2017.
[41]LI M,ANDERSEN D G,PARK J W,et al.Scaling distributed machine learning with the parameter server[C].In Proc.of the 11th USENIX conference on Operating Systems Design and Implementation(OSDI'14).
[42]WANG S.Distributed machine learning[A/OL].SlideShare(2016-01-27).https://www.slideshare.net/stanleywanguni/distributed-machine-learning?from_action=save.
[43]刘铁岩,陈薇,王太峰,等.分布式机器学习:算法、理论与实践[M].北京:机械工业出版社,2018.
[44]BEN-NUN T,HOEFLER T.Demystifying parallel and distributed deep learning:An in-depth concurrency analysis[A/OL].arXiv.org(2018-09-15).https://arxiv.org/abs/1802.09941.
[45]DEAN J,CORRADO G,MONGA R,et al.Large scale distributed deep networks[C].In Proc.of the 25th International Conference on Neural Information Processing Systems(NIPS'12),2012.
[46]LI T,SAHU A K,ZAHEER M,et al.Federated Optimization for Heterogeneous Networks[A/OL].arXiv.org(2019-09-22).https://arxiv.org/abs/1812.06127.
[47]XIE C,KOYEJO S,GUPTA I.Asynchronous federated optimization[A/OL].arXiv.org(2019-05-26).https://arxiv.org/abs/1903.03934.
[48]MENDES R,VILELA J P.Privacy-preserving data mining:Methods,metrics,and applications[J].IEEE Access,2017,5:10562-10582.
[49]BOGDANOV D,KAMM L,LAUR S,et al.Privacy-preserving statistical data analysis on federated databases[C].In Proc.of Annual Privacy Forum,2014.
[50]MANGASARIAN O L,WILD E W,FUNG G M.Privacy-preserving classification of vertically partitioned data via random kernels[J].ACM Transactions on Knowledge Discovery from Data(TKDD),2008,2(3):1-16.
[51]WILD E W,MANGASARIAN O L.Privacy-preserving classification of horizontally partitioned data via random kernels[C].In Proc.of the 2008 International Conference on Data Mining(DMIN'08),2008.
[52]LI T,SAHU A K,TALWALKAR A,et al.Federated Learning:Challenges,Methods,and Future Directions[A/OL].arXiv.org(2019-08-21).https://arxiv.org/abs/1908.07873.
[53]LI Q,WEN Z,HE B.Federated Learning Systems:Vision,Hype and Reality for Data Privacy and Protection[A/OL].arXiv.org(2019-12-03).http://arxiv.org/abs/1907.09693.
[54]MANCUSO J,DECOSTE B,UHMA G.Privacy-preserving machine learning 2018:A year in review[A/OL].Medium(2019-01-10).https://medium.com/dropoutlabs/privacy-preserving-machine-learning-2018-a-year-in-review-b6345a95ae0f.
[55]CHENG K,FAN T,JIN Y,et al.Secureboost:A lossless federated learning framework[A/OL].arXiv.org(2019-01-25).http://arxiv.org/abs/1901.08755.
[56]LIU Y,CHEN T,YANG Q.Secure federated transfer learning[A/OL].arXiv.org(2018-12-08).http://arxiv.org/abs/1812.03337.
[57]ZHUO H H,FENG W,XU Q,et al.Federated Reinforcement Learning[A/OL].arXiv.org(2020-02-09).https://arxiv.org/abs/1901.08277.
[58]SMITH V,CHIANG C-K,SANJABI M,et al.Federated multi-task learning[C].In Proc.of International Conference on Neural Information Processing Systems(NIPS'17),2017.
[59]SHELLER M J,REINA G A,EDWARDS B,et al.Multi-institutional deep learning modeling without sharing patient data:A feasibility study on brain tumor segmentation[C].In Proc.of International MICCAI Brainlesion Workshop,2018.
[60]LIU D,MILLER T,SAYEED R,et al.FADL:federated-autonomous deep learning for distributed electronic health record[A/OL].arXiv.org(2018-12-03).http://arxiv.org/abs/1811.11400.
[61]LIU L,HUANG D.Patient clustering improves efficiency of federated machine learning to predict mortality and hospital stay time using distributed electronic medical records[A/OL].arXiv.org(2019-12-14).http://arxiv.org/abs/1903.09296.
[62]CHEN M,MATHEWS R,OUYANG T,et al.Federated learning Of out-of-vocabulary words[A/OL].arXiv.org(2019-03-26).https://arxiv.org/abs/1903.10635.
[63]AMMAD-UD-DIN M,IVANNIKOVA E,KHAN S A,et al.Federated collaborative if ltering for privacy-preserving personalized recommendation system[A/OL].arXiv.org (2019-01-29).http://arxiv.org/abs/1901.09888.
[64]BONAWITZ K,EICHNER H,GRIESKAMP W,et al.Towards federated learning at scale:System design[A/OL].arXiv.org(2019-03-22).https://arxiv.org/abs/1902.01046.
[65]CHEN F,DONG Z,LI Z,et al.Federated meta-learning for recommendation[A/OL].arXiv.org(2019-12-14).http://arxiv.org/abs/1802.07876.
[66]The Federated AI Ecosystem[M/OL].WeBank AI Department(2020-03-07).https://www.fedai.org/.
[67]Tensorflow Federated(TFF):Machine learning on decentralized data[A/OL].Google.https://www.tensorflow.org/federated.
[68]OSTROWSKI A,INGERMAN K.Introducing tensorflow federated[J/OL].Medium(2019-03-01).https://medium.com/tensorflow/introducing-tensorflow-federated-a4147aa20041.
[69]Tensorflow/Federated[J/OL].Google(2020-02-18).https://github.com/tensorflow/federated.
[70]TensorFlow/Encrypted[J/OL].Google(2019-09-01).https://github.com/tf-encrypted/tf-encrypted.
[71]Machine Learning Network for Deep Learning[A/OL].coMind(2020-03-07).https://comind.org/.
[72]COMINDORG.A set of tutorials to implement the Federated Averaging algorithm on TensorFlow[A/OL].https://github.com/coMindOrg/federated-averaging-tutorials.
[73]YU H,YANG S,ZHU S.Parallel restarted SGD with faster convergence and less communication:Demystifying why model averaging works for deep learning[A/OL].arXiv.org(2018-11-16).https://arxiv.org/abs/1807.06629.
[74]Horovod:Distributed training framework for TensorFlow,Keras,PyTorch,and Apache MXNet[A/OL].Uber(2020-02-18).https://github.com/horovod/horovod.
[75]SERGEEV A,BALSO M D.Horovod:Fast and easy distributed deep learning in TensorFlow[A/OL].arXiv.org(2018-02-21).https://arxiv.org/abs/1802.05799.
[76]OpenMined Website[A/OL].OpenMined(2020-03-07).https://www.openmined.org/.
[77]RYFFEL T,TRASK A,DAHL M,et al.A generic framework for privacy preserving deep learning[A/OL].arXiv.org(2018-11-13).http://arxiv.org/abs/1811.04017.
[78]OPENMINED.OpenMined/PySyft:A library for encrypted,privacy preserving machine learning[A/OL].GitHub(2020-03-07).https://github.com/openmined/pysyft.
[79]RYFFEL T.Federated learning with PySyft and PyTorch[A/OL].OpenMined(2019-03-01).https://blog.openmined.org/upgrade-to-federated-learning-in-10-lines/.
[80]WESTIN A F.Privacy and freedom[J].Washington Lee Law Review,1968,25(1):1-6.
[81]BARRENO M,NELSON B,SEARS R,et al.Can machine learning be secure[C].In Proc.of the 2006 ACM Symposium on Information,computer and communications security,2006.
[82]AONO Y,HAYASHI T,WANG L,et al.Privacy-preserving deep learning via additively homomorphic encryption[J].IEEE Transactions on Information Forensics and Security,2018,13(5):1333-1345.
[83]MATT FREDRIKSON,SOMESH JHA,THOMAS RISTENPART.Model inversion attacks that exploit confidence information and basic countermeasure[C].In Proc.of the 22nd ACM SIGSAC Conference on Computer and Communications Security,2015.
[84]AL-RUBAIE M,CHANG J M.Reconstruction attacks against mobile-based continuous authentication systems in the cloud[J].IEEE Transactions on Information Forensics and Security,2016,11.(12):2648-2663.
[85]PEICHEN XIE,BINGZHE WU,GUANGYU SUN.BAYHENN:combining bayesian deep learning and homomorphic encryption for secure DNN inference[C].In Proc.of the 28th International Joint Conference on Artificial Intelligence(IJCAI'19),2019.
[86]NARAYANAN A,SHMATIKOV V.Robust de-anonymization of large datasets(how to break anonymity of the netflix prize dataset)[J].Technical Report(University of Texas at Austin),2008.
[87]LINDELL Y.Secure multiparty computation for privacy preserving data mining[J].Encyclopedia of Data Warehousing and Mining,2005:1005-1009.
[88]LINDELL Y,PINKAS B.Secure multiparty computation for privacy-preserving data mining[J].IACR Cryptology ePrint Archive,2009,1(1):59-98.
[89]YAO A C.Protocols for secure computations[C].In Proc.of the 23rd Annual Symposium on Foundations of Computer Science,1982.
[90]LINDELL Y.How to simulate it-A tutorial on the simulation proof technique[J].Tutorials on the Foundations of Cryptography,Information Security and Cryptography,2017:277-346.
[91]GOLDREICH O,MICALI S,WIGDERSON A.How to play any mental game[C].In Proc.of the nineteenth annual ACM symposium on Theory of computing,1987.
[92]KELLER M,ORSINI E,SCHOLL P.Mascot:Faster malicious arithmetic secure computation with oblivious transfer[C].In Proc.of the 2016 ACM SIGSAC Conference on Computer and Communications Security(CSS'16),2016.
[93]SHAMIR A.How to share a secret[J].Communications of the ACM,1979,22(11):612-613.
[94]RABIN T,BEN-OR M.Verifiable secret sharing and multiparty protocols with honest majority[C].In Proc.of the 21st Annual ACM Symposium on Theory of Computing(STOC'89),1989.
[95]RABIN M O.How to exchange secrets with oblivious transfer[J].Technical Report(Harvard University),2005.
[96]ISHAI Y,PRABHAKARAN M,SAHAI A.Founding cryptography on oblivious transfer-efficiently[C].In Proc.of Advances in Cryptology(CRYPTO'08),2008.
[97]BELLARE M,MICALI S.Non-interactive oblivious transfer and applications[C].In Proc.of Advances in Cryptology(CRYPTO'89),1990.
[98]NAOR M,PINKAS B.Efficient oblivious transfer protocols[C].In Proc.of the 12th annual ACM-SIAM symposium on Discrete algorithms,2001.
[99]LINDELL Y,HAZAY C.Efficient secure two-party protocols:Techniques and con-structions[M].Berlin Heidelberg:Springer,2010.
[100]DIFFIE W,HELLMAN M E.New directions in cryptography[J].IEEE Trans.Information Theory,1976,22(6):644-654.
[101]YAKOUBOV S.A gentle introduction to Yao's garbled circuits[A/OL].http://web.mit.edu/sonka89/www/papers/2017ygc.pdf.
[102]IMPAGLIAZZO R,RUDICH S.Limits on the provable consequences of one-way permutations[C].In Proc.of the Twenty- first Annual ACM Symposium on Theory of Computing(STOC'89),1989.
[103]BEAVER D.Correlated pseudorandomness and the complexity of private computations[C].In Proc.of the 28th annual ACM symposium on Theory of Computing.
[104]DEMMLER D,SCHNEIDER T,ZOHNER M.Aby-a framework for efficient mixedprotocol secure two-party computation[C].In Proc.of the 2015 NDSS Symposium,2015.
[105]BEIMEL A.Secret-sharing schemes:A survey[C].In Proc.of the International Conference on Coding and Cryptology,2011.
[106]TUTDERE S,UZUNKO O.Construction of arithmetic secret sharing schemes by using torsion limits[A/OL].arXiv.org(2016-01-12).https://arxiv.org/abs/1506.06807.
[107]DAMGARD I,PASTRO V,SMART N P,et al.Multiparty computation from somewhat homomorphic encryption[C].In Proc.of Advances in Cryptology(CRYPTO'12),2012.
[108]WANG D,ZHANG L,MA N,et al.Two secret sharing schemes based on boolean operation[J].Pattern Recognition,2007,40(10):2776-2785.
[109]BEAVER D.Efficient multiparty protocols using circuit randomization[C].In Proc.of the Annual International Cryptology Conference,1991.
[110]GILBOA N.Two party RSA key generation[C].In Proc.of Annual International Cryptology Conference,1999.
[111]DAMGARD I,KELLER M,LARRAIA E,et al.Practical covertly secure MPC for dishonest majority-or:Breaking the SPDZ limits[C].In Proc.of European Symposium on Research in Computer Security(ESORICS'13),2013.
[112]KELLER M,PASTRO V,ROTARU D.Overdrive:Making SPDZ great again[C].In Proc.of Advances in Cryptology(CRYPTO'18),2018:158-189.
[113]ROUHANI B D,RIAZI M S,KOUSHANFAR F.DeepSecure:Scalable provablysecure deep learning[A/OL].arXiv.org(2017-05-24).https://arxiv.org/abs/1705.08963.
[114]LINDELL Y,PINKAS B.Privacy preserving data mining[J].Journal of Cryptology,2002,15(3):177-206.
[115]BONAWITZ K,IVANOV V,KREUTER B,et al.Practical secure aggregation for privacy-preserving machine learning[C].In Proc.of the ACM SIGSAC Conference on Computer and Communications Security(CCS'17),2017.
[116]CHEN V,PASTRO V,RAYKOVA M.Secure computation for machine learning with SPDZ[A/OL].arXiv.org(2019-01-02).https://arxiv.org/abs/1901.00329.
[117]DAMGARD I,ESCUDERO D,FREDERIKSEN T,et al.New primitives for activelysecure MPC over rings with applications to private machine learning[J].IACR Cryptology ePrint Archive,2019:1-21.
[118]CRAMER R,DAMGARD I,ESCUDERO D,et al.SPDZtextsubscript2textsuperscriptk:Efficient MPC mod 2k for dishonest majority[C].In Proc.of Annual International Cryptology Conference,2018.
[119]RIVEST R L,ADLEMAN L,DERTOUZOS M L,et al.On data banks and privacy homomorphisms[J].Foundations of secure computation,1978,4(11):169-180.
[120]GOLDWASSER S,MICALI S.Probabilistic encryption&how to play mental poker keeping secret all partial information[C].In Proc.of the fourteenth annual ACM symposium on Theory of computing,1982.
[121]PAILLIER P.Public-key cryptosystems based on composite degree residuosity classe[C].In Proc.of International Conference on the Theory and Applications of Cryptographic Techniques,1999.
[122]BONEH D,GOH E J,NISSIM K.Evaluating 2-DNF formulas on ciphertexts[C].In Proc.of Theory of Cryptography Conference,2005.
[123]GENTRY C.Fully homomorphic encryption using ideal lattices[C].In Proc.of the forty-first annual ACM symposium on Theory of computing,2009.
[124]ARMKNECHT F,BOYD C,CARR C,et al.A guide to fully homomorphic encryption:volume 2015[A].IACR Cryptology ePrint Archive,2015:1-35.
[125]ACAR A,AKSU H,ULUAGAC A S,et al.A survey on homomorphic encryption schemes:Theory and implementation[J].ACM Computing Surveys,2018,51(4):1-35.
[126]RIVEST R L,SHAMIR A,ADLEMAN L.A method for obtaining digital signatures and public-key cryptosystems[J].Communications of the ACM,1978,21(2):120-126.
[127]ELGAMAL T.A public key cryptosystem and a signature scheme based on discrete logarithms[J].IEEE Transactions on Information Theory,1985,31(4):469-472.
[128]ISHAI Y,PASKIN A.Evaluating branching programs on encrypted data[C].In Proc.of Theory of Cryptography,2007:575-594.
[129]BRAKERSKI Z,VAIKUNTANATHAN V.Efficient fully homomorphic encryption from(standard)LWE[C].In Proc.of the 52nd IEEE Annual Symposium on Foundations of Computer Science,2011.
[130]DIJK M V,GENTRY C,HALEVI S,et al.Fully homomorphic encryption over the integers[C].In Proc.of Annual International Conference on the Theory and Applications of Cryptographic Techniques,2010.
[131]LYUBASHEVSKY V,PEIKERT C,REGEV O.On ideal lattices and learning with errors over rings[C].In Proc.of Annual International Conference on the Theory and Applications of Cryptographic Techniques,2010.
[132]BRAKERSKI Z,GENTRY C,VAIKUNTANATHAN V.Fully homomorphic encryption without bootstrapping[J].IACR Cryptology ePrint Archive,2011:1-27.
[133]LOPEZ-ALT A,TROMER E,VAIKUNTANATHAN V.On-the-fly multiparty computation on the cloud via multikey fully homomorphic encryption[C].In Proc.of the 44th annual ACM symposium on Theory of computing,2012.
[134]HARDY S,HENECKA W,IVEY-LAW H,et al.Private federated learning on verti-cally partitioned data via entity resolution and additively homomorphic encryption[A/OL].arXiv.org(2017-11-29).https://arxiv.org/abs/1711.10677.
[135]GILAD-BACHRACH R,DOWLIN N,LAINE K,et al.CryptoNets:Applying neural networks to encrypted data with high throughput and accuracy[C].In Proc.of International Conference on Machine Learning,2016.
[136]HESAMIFARD E,TAKABI H,GHASEMI M.CryptoDL:Deep neural networks over encrypted data[A/OL].arXiv.org(2017-11-14).https://arxiv.org/abs/1711.05189.
[137]JUVEKAR C,VAIKUNTANATHAN V,CHANDRAKASAN A.Gazelle:A low latency framework for secure neural network inference[C].In Proc.of USENIX Security Symposium,2018.
[138]CHAI D,WANG L,CHEN K,et al.Secure federated matrix factorization[A/OL].arXiv.org(2019-06-12).https://arxiv.org/abs/1906.05108.
[139]DWORK C,MCSHERRY F,NISSIM K,et al.Calibrating noise to sensitivity in private data analysis[C].In Proc.of Theory of cryptography conference,2006.
[140]DWORK C,FELDMAN V,HARDT M,et al.Preserving Statistical Validity in Adaptive Data Analysi[A/OL].arXiv.org(2016-03-02).https://arxiv.org/abs/1411.2664.
[141]JAYARAMAN B,EVANS D.When relaxations go bad:Differentially-private machine learning[A/OL].arXiv.org(2019-08-12).https://arxiv.org/abs/1902.08874.
[142]MCSHERRY F,TALWAR K.Mechanism design via differential privacy[C].In Proc.of the 48th Annual IEEE Symposium on Foundations of Computer Science(FOCS'07),2007.
[143]DWORK C,KENTHAPADI K,MCSHERRY F,et al.Our data,ourselves:Privacy via distributed noise generation[C].In Proc.of Annual International Conference on the Theory and Applications of Cryptographic Techniques,2006.
[144]DWORK C,NISSIM K.Privacy-preserving data mining on vertically partitioned databases[C].In Proc.of Annual International Cryptology Conference,2004.
[145]DWORK C,ROTH A.The algorithmic foundations of differential privacy[J].Foundations and Trends in Theoretical Computer Science,2014,9(3):211-407.
[146]PAPERNOT N,ABADI M,ERLINGSSON U,et al.Semi-supervised knowledge transfer for deep learning from private training data[A/OL].arXiv.org(2017-03-03).http://arxiv.org/abs/1610.05755.
[147]PAPERNOT N,SONG S,MIRONOV I,et al.Scalable private learning with pate[A/OL].arXiv.org(2018-02-24).http://arxiv.org/abs/1802.08908.
[148]ABADI M,CHU A,GOODFELLOW I,et al.Deep learning with differential privacy[C].In Proc.of the 2016 ACM SIGSAC Conference on Computer and Communications Security,2016.
[149]MCMAHAN H B,RAMAGE D,TALWAR K,et al.Learning differentially private recurrent language models[A/OL].arXiv.org(2018-02-24).https://arxiv.org/abs/1710.06963.
[150]PHAN N,WU X,DOU D.Preserving differential privacy in convolutional deep belief networks[J].Machine Learning,2017,106(9):1681-1704.
[151]TRIASTCYN A,FALTINGS B.Generating differentially private datasets using GANs[A/OL].arXiv.org(2019-04-28).https://arxiv.org/abs/1803.03148v3.
[152]YU L,LIU L,PU C,et al.Differentially private model publishing for deep learning[A/OL].arXiv.org(2019-12-19).https://arxiv.org/abs/1904.02200.
[153]PHONG L T,PHUONG T T.Privacy-preserving deep learning via weight transmission[A/OL].arXiv.org(2019-02-12).https://arxiv.org/abs/1809.03272.
[154]FEUNTEUN Y.Parallel and distributed deep learning:A survey[A/OL].Towards Data Science(2019-04-29).https://towardsdatascience.com/parallel-and-distributeddeep-learning-a-survey-97137ff94e4c.
[155]GALAKATOS A,CROTTY A,KRASKA T.Distributed machine learning[J].Encyclopedia of Database Systems,2018.
[156]BEKKERMAN R,BILENKO M,LANGFORD J.Scaling up machine learning:Parallel and distributed approaches[M].Cambridge University Press,2012.
[157]CHEN J,PAN X,MONGA R,et al.Revisiting distributed synchronous SGD[A/OL].arXiv.org(2017-03-21).http://arxiv.org/abs/1604.00981.
[158]DEVLIN J,CHANG M W,LEE K,et al.BERT:Pre-training of deep bidirectional transformers for language understanding[A/OL].arXiv.org(2019-05-24).https://arxiv.org/abs/1810.04805.
[159]Apache Spark MLlib[A/OL].Apache(2020-02-08).https://spark.apache.org/mllib/.
[160]Apache DeepSpark[A/OL].Apache(2020-02-18).http://deepspark.snu.ac.kr/.
[161]LOW Y,GONZALEZ J,KYROLA A,et al.GraphLab:A new framework for parallel machine learning[A/OL].arXiv.org(2010-06-25).https://arxiv.org/abs/1006.4990.
[162]Turi Create simplifies the development of custom machine learning models[A/OL].Turi(2020-03-07).https://github.com/apple/turicreate.
[163]Apache Spark GraphX[A/OL].Apache(2020-03-17).https://spark.apache.org/docs/latest/graphx-programming-guide.html.
[164]MALEWICZ G,AUSTERN M H,BIK A J C,et al.Pregel:A system for largescale graph processing[C].In Proc.of the ACM SIGMOD International Conference on Management of Data(SIGMOD'10),2010.
[165]Distributed Machine Learning Toolkit(DMTK)[A/OL].Microsoft(2020-03-07).http://www.dmtk.io/.
[166]Distributed Training in TensorFlow[A/OL].Google(2020-03-07).https://www.tensorflow.org/guide/distributed_training.
[167]ARNOLD S.Writing Distributed Applications with PyTorch[A/OL].PyTorch.org(2020-03-07).https://pytorch.org/tutorials/intermediate/dist_tuto.html.
[168]JIA Z,ZAHARIA M,AIKEN A.Beyond data and model parallelism for deep neural networks[C].In Proc.of the Conference on Systems and Machine Learning(SysML'19),2019.
[169]DAS A.Distributed training of deep learning models with PyTorch[A/OL].Medium(2019-04-10).https://medium.com/intel-student-ambassadors/distributed-trainingof-deep-learning-models-with-pytorch-1123fa538848.
[170]FUKUDA K.Technologies behind Distributed Deep Learning:AllReduce[A/OL].Preferred Networks(2018-07-10).https://preferredresearch.jp/2018/07/10/technologies-behind-distributed-deep-learning-allreduce/.
[171]Apache Hadoop MapReduce[A/OL].Apache(2020-02-18).https://hadoop.apache.org/docs/r2.8.0/hadoop-mapreduce-client/hadoop-mapreduce-client-core/MapReduceTutorial.html.
[172]CHILIMBI T,SUZUE Y,APACIBLE J,et al.Project Adam:Building an efficient and scalable deep learning training system[C].In Proc.of the 11th USENIX conference on Operating Systems Design and Implementation(OSDI'14),2014.
[173]GAUNT A L,JOHNSON M A,LAWRENCE A,et al.AMPNet:Asynchronous model-parallel training for dynamic neural networks[C].In Proc.of the 6th International Conference on Learning Representations,2018.
[174]JIA Z,LIN S,QI C R,et al.Exploring hidden dimensions in accelerating convolutional neural networks[C].In Proc.of the 35th International Conference on Machine Learning(ICML'18),2018.
[175]KIM H,PARK J,JANG J,et al.Deepspark:Spark-based deep learning supporting asynchronous updates and Caffe compatibility[A/OL].arXiv.org(2016-10-01).https://arxiv.org/abs/1602.08191.
[176]ZHANG Z,CUI P,ZHU W.Deep learning on graphs:A survey[A/OL].arXiv.org(2019-11-11).https://arxiv.org/abs/1812.04202.
[177]TIAN X,XIE B,ZHAN J.Cymbalo:An efficient graph processing framework for machine learning[C].In Proc.of IEEE International Conference on Parallel and Distributed Processing,2018.
[178]XIAO W,XUE J,MIAO Y,et al.Tuxtextsuperscript2:Distributed graph computation for machine learning[C].In Proc.of the 14th USENIX Symposium on Networked Systems Design and Implementation(NSDI'17),2017.
[179]Apache Storm[A/OL].Apache(2020-02-18).https://storm.apache.org/.
[180]Apache Hadoop YARN[A/OL].Apache(2020-02-18).https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html.
[181]BOEHM M,TATIKONDA S,REINWALD B,et al.Hybrid parallelization strategies for large-scale machine learning in SystemML[C].In Proc.of VLDB Endowment,2016.
[182]PANSARE N,DUSENBERRY M,JINDAL N,et al.Deep learning with Apache SystemML[A/OL].arXiv.org(2018-02-08).https://arxiv.org/abs/1802.04647.
[183]SHRIVASTAVA D,CHAUDHURY S,JAYADEVA.A data and model-parallel,distributed and scalable framework for training of deep networks in Apache Spark[A/OL].arXiv.org(2017-08-19).https://arxiv.org/abs/1708.05840.
[184]WANG M,HUANG C-C,LI J.Unifying data,model and hybrid parallelism in deep learning via tensor tiling[A/OL].arXiv.org(2018-05-10).https://arxiv.org/abs/1805.04170.
[185]KRIZHEVSKY A.One weird trick for parallelizing convolutional neural networks[A/OL].arXiv.org(2014-04-26).https://arxiv.org/abs/1404.5997.
[186]SONG L,MAO J,ZHUO Y,et al.HyPar:Towards hybrid parallelism for deep learning accelerator array[C].In Proc.of the 25th International Symposium on High-Performance Computer Architecture,2019.
[187]QUINLAN J.Induction of decision trees[J].Machine Learning,1986:81-106.
[188]WANG K,XU Y,SHE R,et al.Classification spanning private databases[C].In Proc.of the International Conference on Artificial Intelligence,2006.
[189]DU W,ZHAN Z.Building decision tree classifier on private data[C].In Proc.of the IEEE international conference on Privacy,security and data mining,2002.
[190]JAGANNATHAN G,PILLAIPAKKAMNATT K,WRIGHT R N.A practical differentially private random decision tree classifier[C].In Proc.of IEEE International Conference on Data Mining Workshops,2009.
[191]CHAUDHURI K,MONTELEONI C.Privacy-preserving logistic regression[C].In Proc.of the 21st International Conference on Neural Information Processing Systems(NIPS'08),2008.
[192]DWORK C.Differential privacy:A survey of results[C].In Proc.of the 5th International Conference on Theory and Applications of Models of Computation(TAMC'08),2008.
[193]SONG S,CHAUDHURI K,SARWATE A D.Stochastic gradient descent with differentially private updates[C].In Proc.of Global Conference on Signal and Information Processing,2013.
[194]SHOKRI R,SHMATIKOV V.Privacy-preserving deep learning[C].In Proc.of the ACM SIGSAC Conference on Computer and Communications Security(CCS'15),2015.
[195]DWORK C.A firm foundation for private data analysis[J].Communications of the ACM,2011,54(1):86-95.
[196]PARK M,FOULDS J,CHAUDHURI K,et al.DP-EM:differentially private expectation maximization[A/OL].arXiv.org(2016-10-31).http://arxiv.org/abs/1605.06995.
[197]AONO Y,HAYASHI T,TRIEU PHONG L,et al.Scalable and secure logistic regression via homomorphic encryption[C].In Proc.of the 6th ACM Conference on Data and Application Security and Privacy,2016.
[198]FIENBERG S E,FULP W J,SLAVKOVIC A B,et al.Secure log-linear and logistic regression analysis of distributed databases[C].In Proc.of International Conference on Privacy in Statistical Databases,2006.
[199]SLAVKOVIC A B,NARDI Y,TIBBITS M M.Secure logistic regression of horizontally and vertically partitioned distributed databases[C].In Proc.of the 7th International Conference on Data Mining Workshops(ICDMW'7),2007.
[200]YU H,JIANG X,VAIDYA J.Privacy-preserving SVM using nonlinear kernels on horizontally partitioned data[C].In Proc.of the 2006 ACM symposium on Applied computing,2006.
[201]ZHAN J,MATWIN S.Privacy-preserving support vector machine classification[J].International Journal of Intelligent Information and Database Systems,2007,1(3):356-385.
[202]LIN X,CLIFTON C,ZHU M.Privacy-preserving clustering with distributed EM mixture modeling[J].Knowledge and information systems,2005,8(1):68-81.
[203]BONAWITZ K,IVANOV V,KREUTER B,et al.Practical secure aggregation for federated learning on user-held data[A/OL].arXiv.org(2016-11-14).http://arxiv.org/abs/1611.04482.
[204]WAN L,NG W K,HAN S,et al.Privacy-preservation for gradient descent methods[C].In Proc.of the 13th ACM SIGKDD international conference on Knowledge discovery and data mining,2007.
[205]DU W,HAN Y S,CHEN S.Privacy-preserving multivariate statistical analysis:Linear regression and classification[C].In Proc.of the SIAM international conference on data mining,2004.
[206]JIN H,ZHU Y.Multi-objective evolutionary federated learning[A/OL].arXiv.org(2019-06-08).http://arxiv.org/abs/1812.07478v2.
[207]JIANG L,TAN R,LOU X,et al.On lightweight privacy-preserving collaborative learning for internet-of-things objects[C].In Proc.of the International Conference on Internet of Things Design and Implementation(IoTDI'19),2019.
[208]WAGH S,GUPTA D,CHANDRAN N.SecureNN:Efficient and private neural network training[J].IACR Cryptology ePrint Archive,2018:1-24.
[209]LIN Y,HAN S,MAO H,et al.Deep gradient compression:Reducing the communication bandwidth for distributed training[C].In Proc.of International Conference on Learning Representations,2018.
[210]SU H,CHEN H.Experiments on parallel training of deep neural network using model averaging[A/OL].arXiv.org(2018-07-01).https://arxiv.org/abs/1507.01239.
[211]TANG H,YU C,RENGGLI C,et al.Distributed learning over unreliable networks[A/OL].arXiv.org(2019-05-16).https://arxiv.org/abs/1810.07766.
[212]XU K,MI H,FENG D,et al.Collaborative deep learning across multiple data centers[A/OL].arXiv.org(2018-10-16).https://arxiv.org/abs/1810.06877.
[213]CANO I,WEIMER M,MAHAJAN D,et al.Towards geo-distributed machine learning[A/OL].arXiv.org(2016-03-30).https://arxiv.org/abs/1603.09035.
[214]HSIEH K,HARLAP A,VIJAYKUMAR N,et al.Gaia:Geo-distributed machine learning approaching lan speeds[C].In Proc.of the 14th USENIX Symposium on Networked Systems Design and Implementation(NSDI'17),2017.
[215]HO Q,CIPAR J,CUI H,et al.More effective distributed machine learning via a stale synchronous parallel parameter server[C].In Proc.of the 26th International Conference on Neural Information Processing Systems(NIPS'13),2013.
[216]ZANTEDESCHI V,BELLET A,TOMMASI M.Fully decentralized joint learning of personalized models and collaboration graphs[A/OL].arXiv.org(2019-06-03).https://arxiv.org/abs/1901.08460.
[217]CHANG K,BALACHANDAR N,LAM C,et al.Distributed deep learning networks among institutions for medical imaging[J].Journal of the American Medical Informatics Association,2018,25(8):945-954.
[218]CHANG K,BALACHAN N,LAM C K,et al.Institutionally distributed deep learning networks[A/OL].arXiv.org(2017-09-10).https://arxiv.org/abs/1709.05929.
[219]HEGEDUS I,DANNER G,JELASITY M.Gossip learning as a decentralized alternative to federated learning[C].In Proc.of the 14th International Federated Conference on Distributed Computing Techniques,2019.
[220]HARDY C,LE MERRER E,SERICOLA B.Gossiping GANs:Position paper[C].In Proc.of the 2nd Workshop on Distributed Infrastructures for Deep Learning,2018.
[221]DAILY J,VISHNU A,SIEGEL C,et al.GossipGraD:Scalable deep learning using gossip communication based asynchronous gradient descent[A/OL].arXiv.org(2018-03-15).http://arxiv.org/abs/1803.05880.
[222]LIU Y,LIU J,BASAR T.Differentially private gossip gradient descent[C].In Proc.of IEEE Conference on Decision and Control(CDC'18),2018.
[223]HADDADPOUR F,KAMANI M M,MAHDAVI M,et al.Local SGD with periodic averaging:Tighter analysis and adaptive synchronization[A/OL].arXiv.org(2019-10-30).https://arxiv.org/abs/1910.13598.
[224]LIU D,MILLER T,SAYEED R,et al.FADL:Federated-autonomous deep learning for distributed electronic health record[A/OL].arXiv.org(2018-12-03).https://arxiv.org/abs/1811.11400.
[225]DUAN M.Astraea:Self-balancing federated learning for improving Classification Accuracy of Mobile Deep Learning Applications[A/OL].arXiv.org(2019-07-02).https://arxiv.org/abs/1907.01132.
[226]CHEN X,CHEN T,SUN H,et al.Distributed training with heterogeneous data:Bridging median-and mean-based algorithms[A/OL].arXiv.org(2019-06-06).https://arxiv.org/abs/1906.01736.
[227]LI L,XU W,CHEN T,et al.RSA:Byzantine-robust stochastic aggregation methods for distributed learning from heterogeneous datasets[A/OL].arXiv.org(2018-11-11).https://arxiv.org/abs/1811.03761.
[228]ZHANG A,LIPTON Z C,LI M,et al.Dive into deep learning[M/OL].D2L.ai,2019.https://en.d2l.ai/d2l-en.pdf.
[229]IOFFE S,SZEGEDY C.Batch normalization:Accelerating deep network training by reducing internal covariate shift[C].In Proc.of the 32nd International Conference on Machine Learning(ICML'15),2015.
[230]GOODFELLOW I J,VINYALS O,SAXE A M.Qualitatively characterizing neural network optimization problems[A/OL].arXiv.org(2015-05-21).https://arxiv.org/abs/1412.6544.
[231]SRIVASTAVA N,HINTON G,KRIZHEVSKY A,et al.Dropout:A simple way to prevent neural networks from over fitting[J].Journal of Machine Learning Research,2014,15:1929-1958.
[232]HAN S,MAO H,DALLY W J.Deep compression:Compressing deep neural networks with pruning,trained quantization and huffman coding[A/OL].arXiv.org(2016-02-15).https://arxiv.org/abs/1510.00149.
[233]KAMP M,ADILOVA L,SICKING J,et al.Efficient decentralized deep learning by dynamic model averaging[C].In Proc.of Machine Learning and Knowledge Discovery in Databases(KDD'18),2018.
[234]WANG L,WANG W,LI B.CMFL:Mitigating communication overhead for feder-ated learning[C].In Proc.of the 39th IEEE International Conference on Distributed Computing Systems(ICDCS'19),2019.
[235]NISHIO T,YONETANI R.Client selection for federated learning with heterogeneous resources in mobile edge[A/OL].arXiv.org(2018-12-03).https://arxiv.org/abs/1804.08333.
[236]Google Workshop on Federated Learning and Analytics[A/OL].Google(2019-06-18).https://sites.google.com/view/federated-learning-2019/home.
[237]MOHRI M,SIVEK G,SURESH A T.Agnostic federated learning[A/OL].arXiv.org(2019-02-01).https://arxiv.org/abs/1902.00146.
[238]MA Y,ZHU X,HSU J.Data poisoning against differentially-private learners:Attacks and defenses[A/OL].arXiv.org(2019-07-05).https://arxiv.org/abs/1903.09860.
[239]PILLUTLA K,KAKADE S M,HARCHAOUI Z.Robust aggregation for federated learning[A/OL].arXiv.org(2019-12-31).https://arxiv.org/abs/1912.13445.
[240]AGARWAL N,SURESH A T,YU F,et al.cpSGD:Communication-efficient and differentially-private distributed SGD[A/OL].arXiv.org(2018-05-27).https://arxiv.org/abs/1805.10559.
[241]JOSHI J,WANG G.Adaptive communication strategies to achieve the best error-runtime trade-off in local-update SGD[A/OL].arXiv.org(2019-03-07).https://arxiv.org/abs/1810.08313.
[242]SONG D.Decentralized Federated Learning[A/OL].Google(2019-06-18).https://drive.google.com/file/d/1Bk3ldYJcYo405uwATsqC8ZD1_UcLGlRL/view.
[243]HYNES N,CHENG R,SONG D.Efficient deep learning on multi-source private data[A/OL].arXiv.org(2018-07-17).https://arxiv.org/abs/1807.06689.
[244]PREUVENEERS D,RIMMER V,TSINGENOPOULOS I,et al.Chained anomaly detection models for federated learning:An intrusion detection case study[J].Applied Sciences,2018,8(12):1-21.
[245]NGUYEN T D,MARCHAL S,MIETTINEN M,et al.D”IoT:A federated self-learning anomaly detection system for IoT[A/OL].arXiv.org(2019-05-10).https://arxiv.org/abs/1804.07474.
[246]RAMAGE D,MCMAHAN H B.Federated learning:Collaborative machine learning without centralized training data[A/OL].Google Blog(2017-04-06).https://ai.googleblog.com/2017/04/federated-learning-collaborative.html.
[247]BAHMANI R,BARBOSA M,BRASSER F,et al.Secure multiparty computation from SGX[C].In Proc.of International Conference on Financial Cryptography and Data Security Financial Cryptography and Data Security(FC'17),2017.
[248]LIANG G,CHAWATHE S S.Privacy-preserving inter-database operations[C].In Proc.of International Conference on Intelligence and Security Informatics,2004.
[249]SCANNAPIECO M,FIGOTIN I,BERTINO E,et al.Privacy preserving schema and data matching[C].In Proc.of the 2007 ACM SIGMOD international conference on Management of data,2007.
[250]VAIDYA J,CLIFTON C.Privacy preserving association rule mining in vertically partitioned data[C].In Proc.of the 8th ACM SIGKDD international conference on Knowledge discovery and data mining,2002.
[251]CHEN T,GUESTRIN C.XGBoost:A scalable tree boosting system[C].In Proc.of the 22nd international conference on knowledge discovery and data mining(KDD'16),2016.
[252]BALDIMTSI F,PAPADOPOULOS D,PAPADOPOULOS S,et al.Server-aided secure computation with off-line parties[C].In Proc.of Computer Security(ESORICS'17),2017.
[253]BOST R,POPA R A,TU S,et al.Machine learning classification over encrypted data[C].In Proc.of the 2015 Network and Distributed System Security(NDSS'15)Symposium,2015.
[254]PAN S J,YANG Q.A survey on transfer learning[J].IEEE IEEE Transactions on Knowledge and Data Engineering,2010,22(10):1345-1359.
[255]YANG Q,ZHANG Y,DAI W Y,et al.Transfer Learning[M].Cambridge University Press,2020.DOI:https://doi.org/0.1017/9781139061773.
[256]ZHU Y,CHEN Y,LU Z,et al.Heterogeneous transfer learning for image classification[C].In Proc.of the 25th AAAI Conference on Artificial Intelligence(AAAI'11),2011.
[257]PAN S J,NI X,SUN J-T,et al.Cross-domain sentiment classification via spectral feature alignment[C].In Proc.of the 19th International Conference on World Wide Web(WWW'10),2010.
[258]LI Z,ZHANG Y,WEI Y,et al.End-to-end adversarial memory network for crossdomain sentiment classification[C].In Proc.of the 26th International Joint Conference on Artificial Intelligence(IJCAI'17),2017.
[259]OQUAB M,BOTTOU L,LAPTEV I,et al.Learning and transferring mid-level image representations using convolutional neural networks[C].In Proc.of the IEEE Conference on Computer Vision and Pattern Recognition(CVPR'14),2014.
[260]SHU X,QI G-J,TANG J,et al.Weakly-shared deep transfer networks for heterogeneous-domain knowledge propagation[C].In Proc.of the 23rd ACM International Conference on Multimedia(MM'15),2015.
[261]KIM M,SONG Y,WANG S,et al.Secure logistic regression based on homomorphic encryption:Design and evaluation[J].JMIR Medical Informatics,2018,6(2):1-19.
[262]MCSHERRY F.Deep learning and differential privacy.GitHub(2017-10-27).https://github.com/frankmcsherry/blog/blob/master/posts/2017-10-27.md.
[263]RUDER S.Neural Transfer Learning for Natural Language Processing[D/OL].National University of Ireland(2019-06-07).https://aran.library.nuigalway.ie/handle/10379/15463.
[264]BAGDASARYAN E,VEIT A,HUA Y,et al.ImageNet:A large-scale hierarchical image database[C].In Proc.of the 2009 IEEE Conference on Computer Vision and Pattern Recognition,2009.
[265]YU H,LIU Z,LIU Y,et al.A fairness-aware incentive scheme for federated earning[C].In Proc.of the 3rd AAAI/ACM Conference on Artificial Intelligence,Ethics,and Society(AIES'20),2020.
[266]YANG S,WU F,TANG S,et al.On designing data quality-aware truth estimation and surplus sharing method for mobile crowdsensing[J].IEEE Journal on Selected Areas in Communications,2017,35(4):832-847.
[267]GOLLAPUDI S,KOLLIAS K,PANIGRAHI D,et al.Profit sharing and efficiency in utility games[C].In Proc.of the 25th Annual European Symposium on Algorithms(ESA'17),2017.
[268]AUGUSTINE J,CHEN N,ELKIND E,et al.Dynamics of profit-sharing games[C].In Proc.of the 22nd international joint conference on Artificial Intelligence(IJCAI'11),2015.
[269]KRAUSE A,SINGLA A.Truthful incentives in crowdsourcing tasks using regret minimization mechanisms[C].In Proc.of the 22nd international conference on World Wide Web(WWW'13),2013.
[270]FALTINGS B,RADANOVIC G.Game theory for data science:Eliciting truthful information[M].Williston:Morgan&Claypool Publishers,2017.
[271]GHOSH A,DASGUPTA A.Crowdsourced judgement elicitation with endogenous proficiency[C].In Proc.of the 22nd international conference on World Wide Web(WWW'13),2013.
[272]SHNAYDER V,AGARWAL A,FRONGILLO R,et al.Informed Truthfulness in Multi-Task Peer Prediction[A/OL].arXiv.org(2016-07-16).https://arxiv.org/abs/1603.03151.
[273]KONG Y,SCHOENEBECK G.An information theoretic framework for designing information elicitation mechanisms that reward truth-telling[J].ACM Transactions on Economics and Computation,2019,7(1):1-33.
[274]RADANOVIC G,JURCA B FALTINGS R.Incentives for effort in crowdsourcing using the peer truth serum[J].ACM Transactions on Intelligent Systems and Technology,2016,7(4):1-28.
[275]RICHARDSON A,FALTINGS A,FILOS-RATSIKAS B.Rewarding High-Quality Data via Influence Functions[A/OL].arXiv.org(2019-08-30).https://arxiv.org/abs/1908.11598.
[276]JIA R,DAO D,WANG B,et al.Towards efficient data valuation based on the shapley value[A].arXiv.org(2019-12-21).https://arxiv.org/abs/1902.10275.
[277]MISHRA D,VEERAMANI D.Vickrey-dutch procurement auction for multiple items[J].European Journal of Operational Research,2007,180:617-629.
[278]The National Commission for the Protection of Human Subjects of Biomedical and Behavioral Research.THE BELMONT REPORT[M].Technical report,1978.
[279]YU H,SHEN Z,MIAO C,et al.Building ethics into artificial intelligence[A/OL].arXiv.org(2018-12-07).http://arxiv.org/abs/1812.02953.
[280]YU H,MIAO C,SHEN Z,et al.Efficient task sub-delegation for crowdsourcing[C].In Proc.of the 29th AAAI Conference on Artificial Intelligence,2015.
[281]YU H,MIAO C,LEUNG C,et al.Mitigating herding in hierarchical crowdsourcing networks[J].Scientific Reports,2016,6(4):1-10.
[282]YU H,MIAO C,ZHENG Y,et al.Ethically aligned opportunistic scheduling for productive laziness[A/OL].arXiv.org(2019-01-02).http://arxiv.org/abs/1901.00298.
[283]NEELY M J.Stochastic Network optimization with Application to Communication and Queueing Systems[M].Willistion:Morgan&Claypool Publishers,2010.
[284]REDMON J,DIVVALA S,GIRSHICK R,et al.You only look once:Unified,real-time object detection[A/OL].arXiv.org(2016-05-09).https://arxiv.org/abs/1506.02640.
[285]ROY A G,SIDDIQUI S,POLSTERL S,et al.Braintorrent:A peer-to-peer environment for decentralized federated learning[A/OL].arXiv.org(2019-05-16).https://arxiv.org/abs/1905.06731.
[286]SILVA S,GUTMAN B,ROMERO E,et al.Federated learning in distributed medical databases:Meta-analysis of large-scale subcortical brain data[A/OL].arXiv.org(2019-03-14).https://arxiv.org/abs/1810.08553.
[287]YUROCHKIN M,AGARWAL M,GHOSH S,et al.Bayesian nonparametric federated learning of neural networks[A/OL].arXiv.org(2019-05-28).https://arxiv.org/abs/1905.12022.
[288]JORDAN R,THIBAUX M I.Hierarchical beta processes and the indian buffet process[C].In Proc.of the 11th International Workshop on Artificial Intelligence and Statistics,2007.
[289]SCHMIDHUBER S,HOCHREITER J.Long short-term memory[J].Neural Computation,1997,9(8):1735-1780.
[290]CHO K,VAN MERRIENBOER B,GULCEHRE C,et al.Learning phrase representations using rnn encoder-decoder for statistical machine translation[A/OL].arXiv.org(2014-09-03).https://arxiv.org/abs/1406.1078.
[291]VAN DEN OORD A,DIELEMAN S,ZEN H,et al.WaveNet:A generative model for raw audio[A/OL].arXiv.org(2016-09-19).https://arxiv.org/abs/1609.03499.
[292]LEROY D,COUCKE A,LAVRIL T,et al.Federated learning for keyword spotting[C].In Proc.of IEEE International Conference on Acoustics,Speech and Signal Processing(ICASSP'2019),2019.
[293]KINGMA D P,BA J.Adam:A method for stochastic optimization[A/OL].arXiv.org(2017-01-30).https://arxiv.org/abs/1412.6980v9.
[294]JI S,PAN S,LONG G,et al.Learning private neural language modeling with attentive aggregation[A/OL].arXiv.org(2019-03-13).https://arxiv.org/abs/1812.07108.
[295]RUDER S,VULIC I,SOGAARD A.A survey of cross-lingual word embedding models[A/OL].arXiv.org(2019-10-06).https://arxiv.org/abs/1706.04902.
[296]AUGENSTEIN I,RUDER S,SOGAARD A.Multi-task learning of pairwise sequence classification tasks over disparate label spaces[A/OL].arXiv.org(2018-04-09).https://arxiv.org/abs/1802.09913.
[297]CHEN X,CARDIE C.Multinomial adversarial networks for multi-domain text classification[A/OL].arXiv.org(2018-02-15).https://arxiv.org/abs/1802.05694.
[298]ZHANG S,YAO L,SUN A,et al.Deep learning based recommender system:A survey and new perspectives[J].ACM Computing Surveys,2019,52(1):1-38.
[299]ADOMAVICIUS G,TUZHILIN A.Toward the next generation of recommender systems:a survey of the state-of-the-art and possible extensions[J].IEEE Transactions on Knowledge and Data Engineering,2005,17(6):734-749.
[300]ZHOU Y,WILKINSON D M,SCHREIBER R,et al.Large-scale parallel collaborative filtering for the netflix prize[C].In Proc.of the 4th International Conference Algorithmic Aspects in Information and Management(AAIM'08),2018.
[301]GUO H,TANG R,YE Y,et al.DeepFM:A factorization-machine based neural network for CTR prediction[C].In Proc.of the 26th International Joint Conference on Artificial Intelligence(IJCAI'17),2017.
[302]EUGENE K.Federated online learning to rank with evolution strategies[C].In Proc.of the 12th ACM International Conference on Web Search and Data Mining,2019.
[303]TRIENES J,HIEMSTRA A T,CANO D.Recommending users:Whom to follow on federated social networks[A/OL].arXiv.org(2018-11-22).http://arxiv.org/abs/1811.09292.
[304]SUTTON R S,BARTO A G.Introduction to Reinforcement Learning[M].Cambridge:MIT Press,1998.
[305]RUMMERY G A,NIRANJAN M.On-line Q-learning using connectionist systems[J].Technical Report(Cambridge University),1994.
[306]WATKINS C,DAYAN P.Q-learning[J].Machine Learning,1992:279-292.
[307]MNIH V,BADIA A P,MIRZA M,et al.Asynchronous methods for deep reinforcement learning[C].In Proc.of the 33rd International Conference on Machine Learning,2016.
[308]NAIR A,SRINIVASAN P,BLACKWELL S,et al.Massively parallel methods for deep reinforcement learning[A/OL].arXiv.org(2015-07-16).http://arxiv.org/abs/1507.04296.
[309]CLEMENTE A V,CASTEJON H N,CHANDRA A.Efficient parallel methods for deep reinforcement learning[A/OL].arXiv.org(2017-05-16).http://arxiv.org/abs/1705.04862.
[310]MAO H,ZHANG Z,XIAO Z,et al.Modelling the dynamic joint policy of teammates with attention multi-agent ddpg[C].In Proc.of the 18th International Conference on Autonomous Agents and MultiAgent Systems,2019.
[311]FOERSTER J N,ASSAEL Y M,DE FREITAS N,et al.Learning to communicate with deep multi-agent reinforcement learning[A/OL].arXiv.org(2016-05-24).https://arxiv.org/abs/1605.06676.
[312]BARTH-MARON G,HOFFMAN M W,BUDDEN D,et al.Distributed distributional deterministic policy gradients[A/OL].arXiv.org(2018-04-23).http://arxiv.org/abs/1804.08617.
[313]ESPEHOLT L,SOYER H,MUNOS R,et al.Impala:Scalable distributed deep-RL with importance weighted actor-learner architectures[A/OL].arXiv.org(2018-06-28).http://arxiv.org/abs/1802.01561.
[314]KRETCHMAR R M.Parallel reinforcement learning[C].In Proc.of the 6th World Conference on Systemics,Cybernetics,and Informatics,2002.
[315]KUDENKO M,GROUNDS D.Parallel reinforcement learning with linear function approximation[C].In Proc.of the 5th,6th and 7th European Conference on Adaptive and Learning Agents and Multi-agent Systems:Adaptation and Multi-agent Learning,2008.
[316]LIU B,WANG L,LIU M,et al.Lifelong federated reinforcement learning:A learning architecture for navigation in cloud robotic systems[A/OL].arXiv.org(2019-05-13).http://arxiv.org/abs/1901.06455.
[317]CHEN A.IBM's Watson gave unsafe recommendations for treating cancer[A/OL].The Verge(2018-07-26).https://www.theverge.com/2018/7/26/17619382/ibms-watsoncancer-ai-healthcare-science.
[318]MEARIAN L.Did IBM overhype Watson Health's AI promise?[A/OL].Computerworld(2018-11-14).https://www.computerworld.com/article/3321138/did-ibm-puttoo-much-stock-in-watson-health-too-soon.html.
[319]ZHENG Y,LIU F,HSIEH H.U-air:when urban air quality inference meets big data[C].In Proc.of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining(KDD'13),2013.
[320]2019 Report on China's Smart Cities Development[A/OL].iResearch(2019-02-01).https://www.iresearch.com.cn/Detail/report?id=3350&isfree=0.
[321]The 41st statistical report on China's Internet development[A/OL].The China Internet Network Information Centre(2018-01-31).http://www.cac.gov.cn/2018-01/31/c_1122347026.htm.
[322]Worldwide Internet and Mobile Users:eMarketer's Updated Estimates and Forecast for 2017-2021[A/OL].eMarketer(2017-12-01).https://www.emarketer.com/report/worldwide-internet-mobile-users-emarketers-updated-estimates-forecast-20172021/200 2147.
[323]BAGDASARYAN E,VEIT A,HUA Y,et al.How to backdoor federated learning[A/OL].arXiv.org(2019-08-06).https://arxiv.org/abs/1807.00459.
[324]SAMARAKOON S,BENNIS M,SAAD W,et al.Federated learning for ultra-reliable low-latency V2V communication[C].In Proc.of the IEEE Globecom'18,2018.
[325]JEONG E,OH S,KIM H,et al.Communication-efficient on-device machine learning:Federated distillation and augmentation under non-iid private data[C].In Proc.of the 2018 NIPS Workshop,2018.
[326]ZHU G,LIU D,DU Y,et al.Towards an intelligent edge:Wireless communication meets machine learning[A/OL].arXiv.org(2018-09-02).https://arxiv.org/abs/1809.00343.
[327]ZHOU Z,CHEN X,LI E,et al.Edge intelligence:Paving the last mile of artificial intelligence with edge computing[A/OL].arXiv.org(2019-05-24).https://arxiv.org/abs/1905.10083.
[328]HABACHI O,ADJIF M A,CANCES J P.Fast uplink grant for NOMA:A federated learning based approach[A/OL].arXiv.org(2019-03-24).https://arxiv.org/abs/1904.07975.
[329]NIKNAM S,DHILLON H S,REED J H.Federated learning for wireless communications:Motivation,opportunities and challenges[A/OL].arXiv.org(2019-09-06).https://arxiv.org/abs/1908.06847.
[330]LETAIEF K B,CHEN W,SHI Y,et al.The roadmap to 6G-AI empowered wireless networks[A/OL].arXiv.org(2019-07-19).https://arxiv.org/abs/1904.11686.
[331]BENNIS M.Trends and challenges of federated learning in the 5G network[A/OL].IEEE ComSoc(2019-07-15)[2019-07-15].https://www.comsoc.org/publications/ctn/edging-towards-smarter-network-opportunities-and-challenges-federated-learning.
[332]PARK J,SAMARAKOON S,BENNIS M,et al.Wireless network intelligence at the edge[A/OL].arXiv.org(2019-09-11).https://arxiv.org/abs/1812.02858.
[333]GDPR Info[A/OL].European Union(2020-03-07).https://gdpr-info.eu/.
[334]EU GDPR.ORG Website[A/OL].GDPR.org(2020-03-07).https://eugdpr.org/.
[335]Overview of the General Data Protection Regulation(GDPR)[A/OL].ICO.org.uk(2017-10-20).https://ico.org.uk/media/for-organisations/data-protection-reform/overview-of-the-gdpr-1-13.pdf.
[336]The General Data Protection Regulation(GDPR)[A/OL].European Union(2016-04-27).https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:02016R0679-20160504.
[337]GDPR:A cheat sheet[A/OL].TechRepublic(2019-05-23).https://www.techrepublic.com/article/the-eu-general-data-protection-regulation-gdpr-the-smart-persons-guide/.
[338]KOTSIOS A,MAGNANI M,ROSSI L,et al.An analysis of the consequences of the general data protection regulation(GDPR)on social network research[A/OL].arXiv.org(2019-10-05).http://arxiv.org/abs/1903.03196.
[339]Understanding the GDPR[A/OL].University of Groningen(2019-01-31).https://www.futurelearn.com/courses/general-data-protection-regulation/0/steps/32412.
[340]WHITE L,DADDAR S.Overview of the GDPR:Key points to note[A/OL].https://www.nortonrosefulbright.com/en/knowledge/publications/2ea9cc0d/overview-of-the-gdpr-key-points-to-note.
[341]MCGAVISK T.The positive and negative impact of GDPR[A/OL].Time Data Security(2019-04-07).https://www.timedatasecurity.com/blogs/the-positive-and-negativeimplications-of-gdpr.
[342]ROE D.Understanding GDPR and its impact on the development of ai[A/OL].CMSWire(2018-04-26).https://www.cmswire.com/information-management/understanding-gdpr-and-its-impact-on-the-development-of-ai/.
[343]PIERCE J.Privacy and cybersecurity:A global year-end review[A/OL].Inside Privacy(2018-12-21).https://www.insideprivacy.com/data-privacy/privacy-and-cybersecurity-a-global-year-end-review/.
[344]The California Consumer Privacy Act(CCPA)[A/OL].Californians for Consumer Privacy(2020-03-07).https://www.caprivacy.org/.
[345]Information security technology-Personal information security specification[A].
[346]SHAH A,BANAKAR V,SHASTRI S,et al.Analyzing the impact of GDPR on storage systems[A/OL]:arXiv.org(2019-05-16).http://arxiv.org/abs/1903.04880.
[347]LUO Y,YU Z,SHEPHERD N.China Releases Draft Measures for Data Security Management[A/OL].Covington&Burling LLP(2019-05-28).https://www.insideprivacy.com/uncategorized/china-releases-draft-measures-for-the-administration-of-data-security/.