此处远远没有列全所有的参考文献,只能算是列出了入门文献,它们都是过去十年间对我的思想产生最大影响的研究。虽然我未必完全同意这些文献中的观点,但是它们全都发人深思,值得阅读。在每一章的参考文献中,我都列出了自己的几篇论文;这些都是经过同行评议的科学文献,能够为我在本书中提出的论点提供更详细的解释和科学基础。这些论文中也列出了详尽的参考书目,如果你想确认我的引用来源和细节,可以参考它们。对普通读者来说,这个书目列出的书籍和论文应该足够。我把每一章的参考书目按主题分组,在每一个主题下按作者姓氏的字母顺序排列。有几篇重要的论文引用了不止一次,因为它们与多个主题相关。
绪论 为什么生命会是这样? 列文虎克与早期微生物学的发展Dobell C. Antony van Leeuwenhoek and his Little Animals. Russell and Russell, New York (1958).
Kluyver AJ. Three decades of progress in microbiology. Antonie van Leeuwenhoek 13: 1–20 (1947).
Lane N. Concerning little animals: Reflections on Leeuwenhoek’s 1677 paper. Philosophical Transactions Royal Society B. In press (2015).
Leewenhoeck A. Observation, communicated to the publisher by Mr. Antony van Leewenhoeck, in a Dutch letter of the 9 Octob. 1676 here English’d: concerning little animals by him observed in rain-well-sea and snow water; as also in water wherein pepper had lain infused. Philosophical Transactions Royal Society B 12: 821–31 (1677).
Stanier RY, van Niel CB. The concept of a bacterium. Archiv fur Microbiologie 42: 17–35 (1961).
马古利斯与系列内共生理论Archibald J. One Plus One Equals One. Oxford University Press, Oxford (2014).
Margulis L, Chapman M, Guerrero R, Hall J. The last eukaryotic common ancestor (LECA): Acquisition of cytoskeletal motility from aerotolerant spirochetes in the Proterozoic Eon. Proceedings National Academy Sciences USA 103, 13080–85 (2006).
Sagan L. On the origin of mitosing cells. Journal of Theoretical Biology 14: 225–74 (1967).
Sapp J. Evolution by Association: A History of Symbiosis. Oxford University Press, New York (1994).
乌斯与生物的三大域Crick FHC. The biological replication of macromolecules. Symposia of the Society of Experimental Biology. 12, 138–63 (1958).
Morell V. Microbiology’s scarred revolutionary. Science 276: 699–702 (1997).
Woese C, Kandler O, Wheelis ML. Towards a natural system of organisms: Proposal for the domains Archaea, Bacteria, and Eucarya. Proceedings National Academy Sciences USA 87: 4576–79 (1990).
Woese CR, Fox GE. Phylogenetic structure of the prokaryotic domain: The primary kingdoms. Proceedings National Academy Sciences USA 74: 5088–90 (1977).
Woese CR. A new biology for a new century. Microbiology and Molecular Biology Reviews 68: 173–86 (2004).
比尔·马丁与真核生物的嵌合起源Martin W, Müller M. The hydrogen hypothesis for the first eukaryote. Nature 392: 37–41 (1998).
Martin W. Mosaic bacterial chromosomes: a challenge en route to a tree of genomes. BioEssays 21: 99–104 (1999).
Pisani D, Cotton JA, McInerney JO. Supertrees disentangle the chimeric origin of eukaryotic genomes. Molecular Biology and Evolution 24: 1752–60 (2007).
Rivera MC, Lake JA. The ring of life provides evidence for a genome fusion origin of eukaryotes. Nature 431: 152–55 (2004).
Williams TA, Foster PG, Cox CJ, Embley TM. An archaeal origin of eukaryotes supports only two primary domains of life. Nature 504: 231–36 (2013).
彼得·米切尔与化学渗透偶联Lane N. Why are cells powered by proton gradients? Nature Education 3: 18 (2010).
Mitchell P. Coupling of phosphorylation to electron and hydrogen transfer by a chemiosmotic type of mechanism. Nature 191: 144–48 (1961).
Orgell LE. Are you serious, Dr Mitchell? Nature 402: 17 (1999).
1 什么是生命? 生命的概率和特性Conway-Morris SJ. Life’s Solution: Inevitable Humans in a Lonely Universe. Cambridge University Press, Cambridge (2003).
de Duve C. Life Evolving: Molecules, Mind, and Meaning. Oxford University Press, Oxford (2002).
de Duve. Singularities: Landmarks on the Pathways of Life. Cambridge University Press, Cambridge (2005).
Gould SJ. Wonderful Life. The Burgess Shale and the Nature of History. WW Norton, New York (1989).
Maynard Smith J, Szathmary E. The Major Transitions in Evolution. Oxford University Press, Oxford. (1995).
Monod J. Chance and Necessity. Alfred A. Knopf, New York (1971).
分子生物学的发端Cobb M. 1953: When genes became information. Cell 153: 503–06 (2013).
Cobb M. Life’s Greatest Secret: The Story of the Race to Crack the Genetic Code. Profile, London (2015).
Schrödinger E. What is Life? Cambridge University Press, Cambridge (1944).
Watson JD, Crick FHC. Genetical implications of the structure of deoxyribonucleic acid. Nature 171: 964–67 (1953).
基因组的大小和结构Doolittle WF. Is junk DNA bunk? A critique of ENCODE. Proceedings National Academy Sciences USA 110: 5294–5300 (2013).
Grauer D, Zheng Y, Price N, Azevedo RBR, Zufall RA, Elhaik E. On the immortality of television sets:“functions” in the human genome according to the evolution-free gospel of ENCODE. Genome Biology and Evolution 5: 578–90 (2013).
Gregory TR. Synergy between sequence and size in large-scale genomics. Nature Reviews Genetics 6: 699–708 (2005).
地球生命的前20亿年Arndt N, Nisbet E. Processes on the young earth and the habitats of early life. Annual Reviews Earth and Planetary Sciences 40: 521–49 (2012).
Hazen R. The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet. Viking, New York (2014).
Knoll A. Life on a Young Planet: The First Three Billion Years of Evolution on Earth. Princeton University Press, Princeton (2003).
Rutherford A. Creation: The Origin of Life/The Future of Life. Viking Press, London (2013).
Zahnle K, Arndt N, Cockell C, Halliday A, Nisbet E, Selsis F, Sleep NH. Emergence of a habitable planet. Space Science Reviews 129: 35–78 (2007).
氧气含量的升高Butterfield NJ. Oxygen, animals and oceanic ventilation: an alternative view. Geobiology 7: 1–7 (2009).
Canfield DE. Oxygen: A Four Billion Year History. Princeton University Press, Princeton (2014).
Catling DC, Glein CR, Zahnle KJ, MckayCP. Why O2 is required by complex life on habitable planets and the concept of planetary ‘oxygenation time’. Astrobiology 5: 415–38 (2005).
Holland HD. The oxygenation of the atmosphere and oceans. Philosophical Transactions Royal Society B 361: 903–15 (2006).
Lane N. Life’s a gas. New Scientist 2746: 36–39 (2010).
Lane N. Oxygen: The Molecule that Made the World. Oxford University Press, Oxford (2002).
Shields-Zhou G, Och L. The case for a Neoproterozoic oxygenation event: Geochemical evidence and biological consequences. GSA Today 21: 4–11 (2011).
系列内共生假说的预言Archibald JM. Origin of eukaryotic cells: 40 years on. Symbiosis 54: 69–86 (2011).
Margulis L. Genetic and evolutionary consequences of symbiosis. Experimental Parasitology 39: 277–349 (1976).
O’Malley M. The first eukaryote cell: an unfinished history of contestation. Studies in History and Philosophy of Biological and Biomedical Sciences 41: 212–24 (2010).
源真核生物研究的转折Cavalier-Smith T. Archaebacteria and archezoa. Nature 339: 100–101 (1989).
Cavalier-Smith T. Predation and eukaryotic origins: A coevolutionary perspective. International Journal of Biochemistry and Cell Biology 41: 307–32 (2009).
Henze K, Martin W. Essence of mitochondria. Nature 426: 127–28 (2003).
Martin WF, Müller M. Origin of Mitochondria and Hydrogenosomes. Springer, Heidelberg (2007).
Tielens AGM, Rotte C, Hellemond JJ, Martin W. Mitochondria as we don’t know them. Trends in Biochemical Sciences 27: 564–72 (2002).
van der Giezen M. Hydrogenosomes and mitosomes: Conservation and evolution of functions. Journal of Eukaryotic Microbiology 56: 221–31 (2009).
Yong E. The unique merger that made you (and ewe and yew). Nautilus 17: Sept 4 (2014).
真核生物的超类群Baldauf SL, Roger AJ, Wenk-Siefert I, Doolittle WF. A kingdom-level phylogeny of eukaryotes based on combined protein data. Science 290: 972–77 (2000).
Hampl V, Huga L, Leigh JW, Dacks JB, Lang BF, Simpson AGB, Roger AJ. Phylogenomic analyses support the monophyly of Excavata and resolve relationships among eukaryotic ‘supergroups’. Proceedings National Academy Sciences USA 106: 3859–64 (2009).
Keeling PJ, Burger G, Durnford DG, Lang BF, Lee RW, Pearlman RE, Roger AJ, Grey MW. The Tree of eukaryotes. Trends in Ecology and Evolution 20: 670–76 (2005).
最后的真核生物共同祖先Embley TM, Martin W. Eukaryotic evolution, changes and challenges. Nature 440: 623–30 (2006).
Harold F. In Search of Cell History: The Evolution of Life’s Building Blocks. Chicago University Press, Chicago (2014).
Koonin Ev. The origin and early evolution of eukaryotes in the light of phylogenomics. Genome Biology 11: 209 (2010).
McInerney JO, Martin WF, Koonin EV, Allen JF, Galperin MY, Lane N, Archibald JM, Embley TM. Planctomycetes and eukaryotes: a case of analogy not homology. BioEssays 33: 810–17 (2011).
复杂性微步演化的悖论Darwin C. On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life (1st Edition). John Murray, London (1859).
Land MF, Nilsson D-E. Animal Eyes. Oxford University Press, Oxford (2002).
Lane N. Bioenergetic constraints on the evolution of complex life. Cold Spring Harbor Perspectives in Biology. doi: 10.1101/cshperspect.a015982 (2014).
Lane N. Energetics and genetics across the prokaryote-eukaryote divide. Biology Direct 6: 35 (2011).
Müller M, Mentel M, van Hellemond JJ, Henze K, Woehle C, Gould SB, Yu RY, van der Giezen M, Tielens AG, Martin WF. Biochemistry and evolution of anaerobic energy metabolism in eukaryotes. Microbiology and Molecular Biology Reviews 76: 444–95 (2012).
2 什么是活着? 能量、熵与结构Amend JP, LaRowe DE, McCollom TM, Shock EL. The energetics of organic synthesis inside and outside the cell. Philosophical Transactions Royal Society B. 368: 20120255 (2013).
Battley EH. Energetics of Microbial Growth. Wiley Interscience, New York (1987).
Hansen LD, Criddle RS, Battley EH. Biological calorimetry and the thermodynamics of the origination and evolution of life. Pure and Applied Chemistry 81: 1843–55 (2009).
McCollom T, Amend JP. A thermodynamic assessment of energy requirements for biomass synthesis by chemolithoautotrophic micro-organisms in oxic and micro-oxic environments. Geobiology 3: 135–44 (2005).
Minsky A, Shimoni E, Frenkiel-Krispin D. Stress, order and survival. Nature Reviews in Molecular Cell Biology 3: 50–60 (2002).
ATP合成的速度Fenchel T, Finlay BJ. Respiration rates in heterotrophic, free-living protozoa. Microbial Ecology 9: 99–122 (1983).
Makarieva AM, Gorshkov VG, Li BL. Energetics of the smallest: do bacteria breathe at the same rate as whales? Proceedings Royal Society B 272: 2219–24 (2005).
Phillips R, Kondev J, Theriot J, Garcia H. Physical Biology of the Cell. Garland Science, New York (2012).
Rich PR. The cost of living. Nature 421: 583 (2003).
Schatz G. The tragic matter. FEBS Letters 536: 1–2 (2003).
呼吸作用和ATP合成的机制Abrahams JP, Leslie AG, Lutter R, Walker JE. Structure at 2.8 A resolution of F1-ATPase from bovine heart mitochondria. Nature 370: 621–28 (1994).
Baradaran R, Berrisford JM, Minhas SG, Sazanov LA. Crystal structure of the entire respiratory complex I. Nature 494: 443–48 (2013).
Hayashi T, Stuchebrukhov AA. Quantum electron tunneling in respiratory complex I. Journal of Physical Chemistry B 115: 5354–64 (2011).
Moser CC, Page CC, Dutton PL. Darwin at the molecular scale: selection and variance in electron tunnelling proteins including cytochrome c oxidase. Philosophical Transactions Royal Society B 361: 1295–1305 (2006).
Murata T, Yamato I, Kakinuma Y, Leslie AGW, Walker JE. Structure of the rotor of the V-type Na+-ATPase from Enterococcus hirae. Science 308: 654–59 (2005).
Nicholls DG, Ferguson SJ. Bioenergetics. Fourth Edition. Academic Press, London (2013).
Stewart AG, Sobti M, Harvey RP, Stock D. Rotary ATPases: Models, machine elements and technical specifications. BioArchitecture 3: 2–12 (2013).
Vinothkumar KR, Zhu J, Hirst J. Architecture of the mammalian respiratory complex I. Nature 515: 80–84 (2014).
米切尔与化学渗透偶联Harold FM. The Way of the Cell: Molecules, Organisms, and the Order of Life. Oxford University Press, New York (2003).
Lane N. Power, Sex, Suicide: Mitochondria and the Meaning of Life. Oxford University Press, Oxford (2005).
Mitchell P. Coupling of phosphorylation to electron and hydrogen transfer by a chemiosmotic type of mechanism. Nature 191: 144–48 (1961).
Mitchell P. Keilin’s respiratory chain concept and its chemiosmotic consequences. Science 206: 1148–59 (1979).
Mitchell P. The origin of life and the formation and organising functions of natural membranes. In Proceedings of the first international symposium on the origin of life on the Earth (eds AI Oparin, AG Pasynski, AE Braunstein, TE Pavlovskaya).
Moscow Academy of Sciences, USSR (1957).
Prebble J, Weber B. Wandering in the Gardens of the Mind. Oxford University Press, New York (2003).
碳元素与氧化还原化学的必要性Falkowski P. Life’s Engines: How Microbes made Earth Habitable. Princeton University Press, Princeton (2015).
Kim JD, Senn S, Harel A, Jelen BI, Falkowski PG. Discovering the electronic circuit diagram of life: structural relationships among transition metal binding sites in oxidoreductases. Philosophical Transactions Royal Society B 368: 20120257 (2013).
Morton O. Eating the Sun: How Plants Power the Planet. Fourth Estate, London (2007).
Pace N. The universal nature of biochemistry. Proceedings National Academy Sciences USA 98: 805–808 (2001).
Schoepp-Cothenet B, van Lis R, Atteia A, Baymann F, Capowiez L, Ducluzeau A-L, Duval S, ten Brink F, Russell MJ, Nitschke W. On the universal core of bioenergetics. Biochimica Biophysica Acta Bioenergetics 1827: 79–93 (2013).
细菌和古菌的本质差异Edgell DR, Doolittle WF. Archaea and the origin(s) of DNA replication proteins. Cell 89: 995–98 (1997).
Koga Y, Kyuragi T, Nishihara M, Sone N. Did archaeal and bacterial cells arise independently from noncellular precursors? A hypothesis stating that the advent of membrane phospholipid with enantiomeric glycerophosphate backbones caused the separation of the two lines of descent. Journal of Molecular Evolution 46: 54–63 (1998).
Leipe DD, Aravind L, Koonin EV. Did DNA replication evolve twice independently? Nucleic Acids Research 27: 3389–3401 (1999).
Lombard J, López-García P, Moreira D. The early evolution of lipid membranes and the three domains of life. Nature Reviews Microbiology 10: 507–15 (2012).
Martin W, Russell MJ. On the origins of cells: a hypothesis for the evolutionary transitions from abiotic geochemistry to chemoautotrophic prokaryotes, and from prokaryotes to nucleated cells. Philosophical Transactions Royal Society B 358: 59–83 (2003).
Sousa FL, Thiergart T, Landan G, Nelson-Sathi S, Pereira IAC, Allen JF, Lane N, Martin WF. Early bioenergetic evolution. Philosophical Transactions Royal Society B 368: 20130088 (2013).
3 生命起源的能量 生物起源对能量的要求Lane N, Allen JF, Martin W. How did LUCA make a living? Chemiosmosis in the origin of life. BioEssays 32: 271–80 (2010).
Lane N, Martin W. The origin of membrane bioenergetics. Cell 151: 1406–16 (2012).
Martin W, Sousa FL, Lane N. Energy at life’s origin. Science 344: 1092–93 (2014).
Martin WF. Hydrogen, metals, bifurcating electrons, and proton gradients: The early evolution of biological energy conservation. FEBS Letters 586: 485–93 (2012).
Russell M (editor). Origins: Abiogenesis and the Search for Life. Cosmology Science Publishers, Cambridge MA (2011).
米勒-尤里实验与RNA世界Joyce GF. RNA evolution and the origins of life. Nature 33: 217–24 (1989).
Miller SL. A production of amino acids under possible primitive earth conditions. Science 117: 528–29 (1953).
Orgel LE. Prebiotic chemistry and the origin of the RNA world. Critical Reviews in Biochemistry and Molecular Biology 39: 99–123 (2004).
Powner MW, Gerland B, Sutherland JD. Synthesis of activated pyrimidine ribonucleotides in prebiotically plausible conditions. Nature 459: 239–42 (2009).
远离平衡态的热力学Morowitz H. Energy Flow in Biology: Biological Organization as a Problem in Thermal Physics. Academic Press, New York (1968).
Prigogine I. The End of Certainty: Time, Chaos and the New Laws of Nature. Free Press, New York (1997).
Russell MJ, Nitschke W, Branscomb E. The inevitable journey to being. Philosophical Transactions Royal Society B 368: 20120254 (2013).
催化作用的起源Cody G. Transition metal sulfides and the origins of metabolism. Annual Review Earth and Planetary Sciences 32: 569–99 (2004).
Russell MJ, Allen JF, Milner-White EJ. Inorganic complexes enabled the onset of life and oxygenic photosynthesis. In Allen JF, Gantt E, Golbeck JH, Osmond B: Energy from the Sun: 14th International Congress on Photosynthesis. Springer, Heidelberg (2008).
Russell MJ, Martin W. The rocky roots of the acetyl-CoA pathway. Trends in Biochemical Sciences 29: 358–63 (2004).
在水中进行的脱水反应Benner SA, Kim H-J, Carrigan MA. Asphalt, water, and the prebiotic synthesis of ribose, ribonucleosides, and RNA. Accounts of Chemical Research 45: 2025–34 (2012).
de Zwart II, Meade SJ, Pratt AJ. Biomimetic phosphoryl transfer catalysed by iron(II)-mineral precipitates. Geochimica et Cosmochimica Acta 68: 4093–98 (2004).
Pratt AJ. Prebiological evolution and the metabolic origins of life. Artificial Life 17: 203–17 (2011).
原始细胞的形成Budin I, Bruckner RJ, Szostak JW. Formation of protocell-like vesicles in a thermal diffusion column. Journal of the American Chemical Society 131: 9628–29 (2009).
Errington J. L-form bacteria, cell walls and the origins of life. Open Biology 3: 120143 (2013).
Hanczyc M, Fujikawa S, Szostak J. Experimental models of primitive cellular compartments: encapsulation, growth, and division. Science 302: 618–22 (2003).
Mauer SE, Monndard PA. Primitive membrane formation, characteristics and roles in the emergent properties of a protocell. Entropy 13: 466–84 (2011).
Szathmáry E, Santos M, Fernando C. Evolutionary potential and requirements for minimal protocells. Topics in Current Chemistry 259: 167–211 (2005).
复制的起源Cairns-Smith G. Seven Clues to the Origin of Life. Cambridge University Press, Cambridge (1990).
Costanzo G, Pino S, Ciciriello F, Di Mauro E. Generation of long RNA chains in water. Journal of Biological Chemistry 284: 33206–16 (2009).
Koonin EV, Martin W. On the origin of genomes and cells within inorganic compartments. Trends in Genetics 21: 647–54 (2005).
Mast CB, Schink S, Gerland U & Braun D. Escalation of polymerization in a thermal gradient. Proceedings of the National Academy of Sciences USA 110: 8030–35 (2013).
Mills DR, Peterson RL, Spiegelman S. An extracellular Darwinian experiment with a self-duplicating nucleic acid molecule. Proceedings National Academy Sciences USA 58: 217–24 (1967).
深海热液喷口的发现Baross JA, Hoffman SE. Submarine hydrothermal vents and associated gradient environments as sites for the origin and evolution of life. Origins Life Evolution of the Biosphere 15: 327–45 (1985).
Kelley DS, Karson JA, Blackman DK, et al. An off-axis hydrothermal vent field near the Mid-Atlantic Ridge at 30 degrees N. Nature 412: 145–49 (2001).
Kelley DS, Karson JA, Früh-Green GL, et al. A serpentinite-hosted submarine ecosystem: the Lost City Hydrothermal Field. Science 307: 1428–34 (2005).
黄铁矿拉力与铁-硫世界de Duve C, Miller S. Two-dimensional life? Proceedings National Academy Sciences USA 88: 10014–17 (1991).
Huber C, Wäctershäuser G. Activated acetic acid by carbon fixation on (Fe,Ni)S under primordial conditions. Science 276: 245–47 (1997).
Miller SL, Bada JL. Submarine hot springs and the origin of life. Nature 334: 609–611 (1988).
Wächtershäuser G. Evolution of the first metabolic cycles. Proceedings National Academy Sciences USA 87: 200–204 (1990).
Wächtershäuser G. From volcanic origins of chemoautotrophic life to Bacteria, Archaea and Eukarya. Philosophical Transactions Royal Society B 361: 1787–1806 (2006).
碱性热液喷口Martin W, Baross J, Kelley D, Russell MJ. Hydrothermal vents and the origin of life. Nature Reviews Microbiology 6: 805–14 (2008).
Martin W, Russell MJ. On the origins of cells: a hypothesis for the evolutionary transitions from abiotic geochemistry to chemoautotrophic prokaryotes, and from prokaryotes to nucleated cells. Philosophical Transactions Royal Society B 358: 59–83 (2003).
Russell MJ, Daniel RM, Hall AJ, Sherringham J. A hydrothermally precipitated catalytic iron sulphide membrane as a first step toward life. Journal of Molecular Evolution 39: 231–43 (1994).
Russell MJ, Hall AJ, Cairns-Smith AG, Braterman PS. Submarine hot springs and the origin of life. Nature 336: 117 (1988).
Russell MJ, Hall AJ. The emergence of life from iron monosulphide bubbles at a submarine hydrothermal redox and pH front. Journal Geological Society London 154: 377–402 (1997).
蛇纹岩化作用Fyfe WS. The water inventory of the Earth: fluids and tectonics. Geological Society of London Special Publications 78: 1–7 (1994).
Russell MJ, Hall AJ, Martin W. Serpentinization as a source of energy at the origin of life. Geobiology 8: 355–71 (2010).
Sleep NH, Bird DK, Pope EC. Serpentinite and the dawn of life. Philosophical Transactions Royal Society B 366: 2857–69 (2011).
冥古宙的海洋化学Arndt N, Nisbet E. Processes on the young earth and the habitats of early life. Annual Reviews Earth Planetary Sciences 40: 521–49 (2012).
Pinti D. The origin and evolution of the oceans. Lectures Astrobiology 1: 83–112 (2005).
Russell MJ, Arndt NT. Geodynamic and metabolic cycles in the Hadean. Biogeosciences 2: 97–111 (2005).
Zahnle K, Arndt N, Cockell C, Halliday A, Nisbet E, Selsis F, Sleep NH. Emergence of a habitable planet. Space Science Reviews 129: 35–78 (2007).
热 泳Baaske P, Weinert FM, Duhr S, et al. Extreme accumulation of nucleotides in simulated hydrothermal pore systems. Proceedings National Academy Sciences USA 104: 9346–51 (2007).
Mast CB, Schink S, Gerland U, Braun D. Escalation of polymerization in a thermal gradient. Proceedings National Academy Sciences USA 110: 8030–35 (2013).
碱性喷口环境有机合成的热力学Amend JP, McCollom TM. Energetics of biomolecule synthesis on early Earth. In Zaikowski L et al. eds. Chemical Evolution II: From the Origins of Life to Modern Society. American Chemical Society (2009).
Ducluzeau A-L, Schoepp-Cothenet B, Baymann F, Russell MJ, Nitschke W. Free energy conversion in the LUCA: Quo vadis? Biochimica et Biophysica Acta Bioenergetics 1837: 982–988 (2014).
Martin W, Russell MJ. On the origin of biochemistry at an alkaline hydrothermal vent. Philosophical Transactions Royal Society B 367: 1887–1925 (2007).
Shock E, Canovas P. The potential for abiotic organic synthesis and biosynthesis at seafloor hydrothermal systems. Geofluids 10: 161–92 (2010).
Sousa FL, Thiergart T, Landan G, Nelson-Sathi S, Pereira IAC, Allen JF, Lane N, Martin WF. Early bioenergetic evolution. Philosophical Transactions Royal Society B 368: 20130088 (2013).
还原电位与二氧化碳还原反应的动力学障壁Lane N, Martin W. The origin of membrane bioenergetics. Cell 151: 1406–16 (2012).
Maden BEH. Tetrahydrofolate and tetrahydromethanopterin compared: functionally distinct carriers in C1 metabolism. Biochemical Journal 350: 609–29 (2000).
Wächtershäuser G. Pyrite formation, the first energy source for life: a hypothesis. Systematic and Applied Microbiology 10: 207–10 (1988).
天然质子梯度能驱动二氧化碳还原反应吗?Herschy B, Whicher A, Camprubi E, Watson C, Dartnell L, Ward J, Evans JRG, Lane N. An origin-of-life reactor to simulate alkaline hydrothermal vents. Journal of Molecular Evolution 79: 213–27 (2014).
Herschy B. Nature’s electrochemical flow reactors: Alkaline hydrothermal vents and the origins of life. Biochemist 36: 4–8 (2014).
Lane N. Bioenergetic constraints on the evolution of complex life. Cold Spring Harbor Perspectives in Biology doi: 10.1101/cshperspect.a015982 (2014).
Nitschke W, Russell MJ. Hydrothermal focusing of chemical and chemiosmotic energy, supported by delivery of catalytic Fe, Ni, Mo, Co, S and Se forced life to emerge. Journal of Molecular Evolution 69: 481–96 (2009).
Yamaguchi A, Yamamoto M, Takai K, Ishii T, Hashimoto K, Nakamura R. Electrochemical CO2 reduction by Nicontaining iron sulfides: how is CO2 electrochemically reduced at bisulfide-bearing deep sea hydrothermal precipitates? Electrochimica Acta 141: 311–18 (2014).
银河系中蛇纹岩化作用发生的概率de Leeuw NH, Catlow CR, King HE, Putnis A, Muralidharan K, Deymier P, Stimpfl M, Drake MJ. Where on Earth has our water come from? Chemical Communications 46: 8923–25 (2010).
Petigura EA, Howard AW, Marcy GW. Prevalence of Earth-sized planets orbiting Sunlike stars. Proceedings National Academy Sciences USA 110: 19273–78 (2013).
4 细胞的诞生 水平基因转移的问题与物种形成Doolittle WF. Phylogenetic classification and the universal tree. Science 284: 2124–28 (1999).
Lawton G. Why Darwin was wrong about the tree of life. New Scientist 2692: 34–39 (2009).
Mallet J. Why was Darwin’s view of species rejected by twentieth century biologists? Biology and Philosophy 25: 497–527 (2010).
Martin WF. Early evolution without a tree of life. Biology Direct 6: 36 (2011).
Nelson-Sathi S et al. Origins of major archaeal clades correspond to gene acquisitions from bacteria. Nature doi: 10.1038/nature13805 (2014).
基于不到1%基因绘制的“通用生命树”Ciccarelli FD, Doerks T, von Mering C, Creevey CJ, Snel B, et al. Toward automatic reconstruction of a highly resolved tree of life. Science 311: 1283–87 (2006).
Dagan T, Martin W. The tree of one percent. Genome Biology 7: 118 (2006).
古菌和细菌中保留的基因Charlebois RL, Doolittle WF. Computing prokaryotic gene ubiquity: Rescuing the core from extinction. Genome Research 14: 2469–77 (2004).
Koonin EV. Comparative genomics, minimal gene-sets and the last universal common ancestor. Nature Reviews Microbiology 1: 127–36 (2003).
Sousa FL, Thiergart T, Landan G, Nelson-Sathi S, Pereira IAC, Allen JF, Lane N, Martin WF. Early bioenergetic evolution. Philosophical Transactions of the Royal Society B 368: 20130088 (2013).
露卡自相矛盾的特征Dagan T, Martin W. Ancestral genome sizes specify the minimum rate of lateral gene transfer during prokaryote evolution. Proceedings National Academy Sciences USA 104: 870–75 (2007).
Edgell DR, Doolittle WF. Archaea and the origin(s) of DNA replication proteins. Cell 89: 995–98 (1997).
Koga Y, Kyuragi T, Nishihara M, Sone N. Did archaeal and bacterial cells arise independently from noncellular precursors? A hypothesis stating that the advent of membrane phospholipid with enantiomeric glycerophosphate backbones caused the separation of the two lines of descent. Journal of Molecular Evolution 46: 54–63 (1998).
Leipe DD, Aravind L, Koonin EV. Did DNA replication evolve twice independently? Nucleic Acids Research 27: 3389–3401 (1999).
Martin W, Russell MJ. On the origins of cells: a hypothesis for the evolutionary transitions from abiotic geochemistry to chemoautotrophic prokaryotes, and from prokaryotes to nucleated cells. Philosophical Transactions Royal Society B 358: 59–83 (2003).
膜脂质的问题Lane N, Martin W. The origin of membrane bioenergetics. Cell 151: 1406–16 (2012).
Lombard J, López-García P, Moreira D. The early evolution of lipid membranes and the three domains of life. Nature Reviews in Microbiology 10: 507–15 (2012).
Shimada H, Yamagishi A. Stability of heterochiral hybrid membrane made of bacterial sn-G3P lipids and archaeal sn-G1P lipids. Biochemistry 50: 4114–20 (2011).
Valentine D. Adaptations to energy stress dictate the ecology and evolution of the Archaea. Nature Reviews Microbiology 5: 1070–77 (2007).
乙酰辅酶A途径Fuchs G. Alternative pathways of carbon dioxide fixation: Insights into the early evolution of life? Annual Review Microbiology 65: 631–58 (2011).
Ljungdahl LG. A life with acetogens, thermophiles, and cellulolytic anaerobes. Annual Review Microbiology 63: 1–25 (2009).
Maden BEH. No soup for starters? Autotrophy and the origins of metabolism. Trends in Biochemical Sciences 20: 337–41 (1995).
Ragsdale SW, Pierce E. Acetogenesis and the Wood-Ljungdahl pathway of CO2 fixation. Biochimica Biophysica Acta 1784: 1873–98 (2008).
乙酰辅酶A途径的岩石化学根源Nitschke W, McGlynn SE, Milner-White J, Russell MJ. On the antiquity of metalloenzymes and their substrates in bioenergetics. Biochimica Biophysica Acta 1827: 871–81 (2013).
Russell MJ, Martin W. The rocky roots of the acetyl-CoA pathway. Trends in Biochemical Sciences 29: 358–63 (2004).
乙酰硫酯和乙酰磷酸的非生物合成de Duve C. Did God make RNA? Nature 336: 209–10 (1988).
Heinen W, Lauwers AM. Sulfur compounds resulting from the interaction of iron sulfide, hydrogen sulfide and carbon dioxide in an anaerobic aqueous environment. Origins Life Evolution Biosphere 26: 131–50 (I996).
Huber C, Wäctershäuser G. Activated acetic acid by carbon fixation on (Fe,Ni)S under primordial conditions. Science 276: 245–47 (1997).
Martin W, Russell MJ. On the origin of biochemistry at an alkaline hydrothermal vent. Philosophical Transactions of the Royal Society B 367: 1887–1925 (2007).
遗传密码可能的起源Copley SD, Smith E, Morowitz HJ. A mechanism for the association of amino acids with their codons and the origin of the genetic code. Proceedings National Academy Sciences USA 102: 4442–47 (2005).
Lane N. Life Ascending: The Ten Great Inventions of Evolution. WW Norton/Profile, London (2009).
Taylor FJ. Coates D. The code within the codons. Biosystems 22: 177–87 (1989).
碱性热液喷口和乙酰辅酶A途径的一致性Herschy B, Whicher A, Camprubi E, Watson C, Dartnell L, Ward J, Evans JRG, Lane N. An origin-of-life reactor to simulate alkaline hydrothermal vents. Journal of Molecular Evolution 79: 213–27 (2014).
Lane N. Bioenergetic constraints on the evolution of complex life. Cold Spring Harbor Perspectives in Biology doi: 10.1101/cshperspect.a015982 (2014).
Martin W, Sousa FL, Lane N. Energy at life’s origin. Science 344: 1092–93 (2014).
Sousa FL, Thiergart T, Landan G, Nelson-Sathi S, Pereira IAC, Allen JF, Lane N, Martin WF. Early bioenergetic evolution. Philosophical Transactions of the Royal Society B 368: 20130088 (2013).
膜渗透性的问题Lane N, Martin W. The origin of membrane bioenergetics. Cell 151: 1406–16 (2012).
Le Page M. Meet your maker. New Scientist 2982: 30–33 (2014).
Mulkidjanian AY, Bychkov AY, Dibrova D V, Galperin MY, Koonin EV. Origin of first cells at terrestrial, anoxic geothermal fields. Proceedings National Academy Sciences USA 109: E821–E830 (2012).
Sojo V, Pomiankowski A, Lane N. A bioenergetic basis for membrane divergence in archaea and bacteria. PLoS Biology 12(8): e1001926 (2014).
Yong E. How life emerged from deep-sea rocks. Nature doi: 10.1038/nature.2012.12109 (2012).
膜蛋白对质子和钠离子的乱交性Buckel W, Thauer RK. Energy conservation via electron bifurcating ferredoxin reduction and proton/Na(+) translocating ferredoxin oxidation. Biochimica Biophysica Acta 1827: 94–113 (2013).
Lane N, Allen JF, Martin W. How did LUCA make a living? Chemiosmosis in the origin of life. BioEssays 32: 271–80 (2010).
Schlegel K, Leone V, Faraldo-Gómez JD, Müller V. Promiscuous archaeal ATP synthase concurrently coupled to Na+ and H+ translocation. Proceedings National Academy Sciences USA 109: 947–52 (2012).
电子歧化Buckel W, Thauer RK. Energy conservation via electron bifurcating ferredoxin reduction and proton/Na(+) translocating ferredoxin oxidation. Biochimica Biophysica Acta 1827: 94–113 (2013).
Kaster A-K, Moll J, Parey K, Thauer RK. Coupling of ferredoxin and heterodisulfide reduction via electron bifurcation in hydrogenotrophic methanogenic Archaea. Proceedings National Academy Sciences USA 108: 2981–86 (2011).
Thauer RK. A novel mechanism of energetic coupling in anaerobes. Environmental Microbiology Reports 3: 24–25 (2011).
5 复杂细胞的起源 基因组的大小Cavalier-Smith T. Economy, speed and size matter: evolutionary forces driving nuclear genome miniaturization and expansion. Annals of Botany 95: 147–75 (2005).
Cavalier-Smith T. Skeletal DNA and the evolution of genome size. Annual Review of Biophysics and Bioengineering 11: 273–301 (1982).
Gregory TR. Synergy between sequence and size in large-scale genomics. Nature Reviews in Genetics 6: 699–708 (2005).
Lynch M. The Origins of Genome Architecture. Sinauer Associates, Sunderland MA (2007).
真核生物基因组大小可能的限制条件Cavalier-Smith T. Predation and eukaryote cell origins: A coevolutionary perspective. International Journal Biochemistry Cell Biology 41: 307–22 (2009).
de Duve C. The origin of eukaryotes: a reappraisal. Nature Reviews in Genetics 8: 395–403 (2007).
Koonin EV. Evolution of genome architecture. International Journal Biochemistry Cell Biology 41: 298–306 (2009).
Lynch M, Conery JS. The origins of genome complexity. Science 302: 1401–04 (2003).
Maynard Smith J, Szathmary E. The Major Transitions in Evolution. Oxford University Press, Oxford. (1995).
真核生物的嵌合起源Cotton JA, McInerney JO. Eukaryotic genes of archaebacterial origin are more important than the more numerous eubacterial genes, irrespective of function. Proceedings National Academy Sciences USA 107: 17252–55 (2010).
Esser C, Ahmadinejad N, Wiegand C, et al. A genome phylogeny for mitochondria among alpha-proteobacteria and a predominantly eubacterial ancestry of yeast nuclear genes. Molecular Biology Evolution 21: 1643–60 (2004).
Koonin EV. Darwinian evolution in the light of genomics. Nucleic Acids Research 37: 1011–34 (2009).
Pisani D, Cotton JA, McInerney JO. Supertrees disentangle the chimeric origin of eukaryotic genomes. Molecular Biology Evolution 24: 1752–60 (2007).
Rivera MC, Lake JA. The ring of life provides evidence for a genome fusion origin of eukaryotes. Nature 431: 152–55 (2004).
Thiergart T, Landan G, Schrenk M, Dagan T, Martin WF. An evolutionary network of genes present in the eukaryote common ancestor polls genomes on eukaryotic and mitochondrial origin. Genome Biology and Evolution 4: 466–85 (2012).
Williams TA, Foster PG, Cox CJ, Embley TM. An archaeal origin of eukaryotes supports only two primary domains of life. Nature 504: 231–36 (2013).
发酵作用的晚期起源Say RF, Fuchs G. Fructose 1,6-bisphosphate aldolase/phosphatase may be an ancestral gluconeogenic enzyme. Nature 464: 1077–81 (2010).
化学计量单位之下的能量储存机制Hoehler TM, Jørgensen BB. Microbial life under extreme energy limitation. Nature Reviews in Microbiology 11: 83–94 (2013).
Lane N. Why are cells powered by proton gradients? Nature Education 3: 18 (2010).
Martin W, Russell MJ. On the origin of biochemistry at an alkaline hydrothermal vent. Philosophical Transactions of the Royal Society B 367: 1887–1925 (2007).
Thauer RK, Kaster A-K, Seedorf H, Buckel W, Hedderich R. Methanogenic archaea: ecologically relevant differences in energy conservation. Nature Reviews Microbiology 6: 579–91 (2007).
病毒感染与细胞死亡Bidle KD, Falkowski PG. Cell death in planktonic, photosynthetic microorganisms. Nature Reviews Microbiology 2: 643–55 (2004).
Lane N. Origins of death. Nature 453: 583–85 (2008).
Refardt D, Bergmiller T, Kümmerli R. Altruism can evolve when relatedness is low: evidence from bacteria committing suicide upon phage infection. Proceedings Royal Society B 280: 20123035 (2013).
Vardi A, Formiggini F, Casotti R, De Martino A, Ribalet F, Miralto A, Bowler C. A stress surveillance system based on calcium and nitroc oxide in marine diatoms. PLoS Biology 4(3): e60 (2006).
细菌表面积和体积的比例关系Fenchel T, Finlay BJ. Respiration rates in heterotrophic, free-living protozoa. Microbial Ecology 9: 99–122 (1983).
Harold F. The Vital Force: a Study of Bioenergetics. WH Freeman, New York (1986).
Lane N, Martin W. The energetics of genome complexity. Nature 467: 929–34 (2010).
Lane N. Energetics and genetics across the prokaryote-eukaryote divide. Biology Direct 6: 35 (2011).
Makarieva AM, Gorshkov VG, Li BL. Energetics of the smallest: do bacteria breathe at the same rate as whales? Proceedings Royal Society B 272: 2219–24 (2005).
Vellai T, Vida G. The origin of eukaryotes: the difference between prokaryotic and eukaryotic cells. Proceedings Royal Society B 266: 1571–77 (1999).
巨型细菌Angert ER. DNA replication and genomic architecture of very large bacteria. Annual Review Microbiology 66: 197–212 (2012).
Mendell JE, Clements KD, Choat JH, Angert ER. Extreme polyploidy in a large bacterium. Proceedings National Academy Sciences USA 105: 6730–34 (2008).
Schulz HN, Jorgensen BB. Big bacteria. Annual Review Microbiology 55: 105–37 (2001).
Schulz HN. The genus Thiomargarita. Prokaryotes 6: 1156–63 (2006).
内共生体的小基因组,以及对能量的影响Gregory TR, DeSalle R. Comparative genomics in prokaryotes. In The Evolution of the Genome ed. Gregory TR. Elsevier, San Diego, pp. 585–75 (2005).
Lane N, Martin W. The energetics of genome complexity. Nature 467: 929–34 (2010).
Lane N. Bioenergetic constraints on the evolution of complex life. Cold Spring Harbor Perspectives in Biology doi: 10.1101/cshperspect.a015982 (2014).
细菌的内共生体von Dohlen CD, Kohler S, Alsop ST, McManus WR. Mealybug beta-proteobacterial symbionts contain gamma-proteobacterial symbionts. Nature 412: 433–36 (2001).
Wujek DE. Intracellular bacteria in the blue-green-alga Pleurocapsa minor. Transactions American Microscopical Society 98: 143–45 (1979).
为什么线粒体保留了基因Alberts A, Johnson A, Lewis J, Raff M, Roberts K, Walter P. Molecular Biology of the Cell, 5th edition. Garland Science, New York (2008).
Allen JF. Control of gene expression by redox potential and the requirement for chloroplast and mitochondrial genomes. Journal of Theoretical Biology 165: 609–31 (1993).
Allen JF. The function of genomes in bioenergetic organelles. Philosophical Transactions Royal Society B 358: 19–37 (2003).
de Grey AD. Forces maintaining organellar genomes: is any as strong as genetic code disparity or hydrophobicity? BioEssays 27: 436–46 (2005).
Gray MW, Burger G, Lang BF. Mitochondrial evolution. Science 283: 1476–81 (1999).
蓝细菌的多倍体现象Griese M, Lange C, Soppa J. Ploidy in cyanobacteria. FEMS Microbiology Letters 323: 124–31 (2011).
为什么质粒无法克服细菌的能量限制Lane N. Bioenergetic constraints on the evolution of complex life. Cold Spring Harbor Perspectives in Biology doi: 10.1101/cshperspect.a015982 (2014).
Lane N. Energetics and genetics across the prokaryote-eukaryote divide. Biology Direct 6: 35 (2011).
内共生作用的选择冲突及其解决Blackstone NW. Why did eukaryotes evolve only once? Genetic and energetic aspects of conflict and conflict mediation. Philosophical Transactions Royal Society B 368: 20120266 (2013).
Martin W, Müller M. The hydrogen hypothesis for the first eukaryote. Nature 392: 37–41 (1998).
细菌的能量溢出现象Russell JB. The energy spilling reactions of bacteria and other organisms. Journal of Molecular Microbiology and Biotechnology 13: 1–11 (2007).
6 性,以及死亡的起源 演化的速度Conway-Morris S. The Cambrian“explosion”: Slow-fuse or megatonnage? Proceedings National Academy Sciences USA 97: 4426–29 (2000).
Gould SJ, Eldredge N. Punctuated equilibria: the tempo and mode of evolution reconsidered. Paleobiology 3: 115–51 (1977).
Nilsson D-E, Pelger S. A pessimistic estimate of the time required for an eye to evolve. Proceedings Royal Society B 256: 53–58 (1994).
有性生殖与种群结构Lahr DJ, Parfrey LW, Mitchell EA, Katz LA, Lara E. The chastity of amoeba: re-evaluating evidence for sex in amoeboid organisms. Proceedings Royal Society B 278: 2081–90 (2011).
Maynard-Smith J. The Evolution of Sex. Cambridge University Press, Cambridge (1978).
Ramesh MA, Malik SB, Logsdon JM. A phylogenomic inventory of meiotic genes: evidence for sex in Giardia and an early eukaryotic origin of meiosis. Current Biology 15: 185–91 (2005).
Takeuchi N, Kaneko K, Koonin EV. Horizontal gene transfer can rescue prokaryotes from Muller’s ratchet: benefit of DNA from dead cells and population subdivision. Genes Genomes Genetics 4: 325–39 (2014).
内含子的起源Cavalier-Smith T. Intron phylogeny: A new hypothesis. Trends in Genetics 7: 145–48 (1991).
Doolittle WF. Genes in pieces: were they ever together? Nature 272: 581–82 (1978).
Koonin EV. The origin of introns and their role in eukaryogenesis: a compromise solution to the introns-early versus introns-late debate? Biology Direct 1: 22 (2006).
Lambowitz AM, Zimmerly S. Group II introns: mobile ribozymes that invade DNA. Cold Spring Harbor Perspectives in Biology 3: a003616 (2011).
内含子与细胞核的起源Koonin E. Intron-dominated genomes of early ancestors of eukaryotes. Journal of Heredity 100: 618–23 (2009).
Martin W, Koonin EV. Introns and the origin of nucleus–cytosol compartmentalization. Nature 440: 41–45 (2006).
Rogozin IB, Wokf YI, Sorokin AV, Mirkin BG, Koonin EV. Remarkable interkingdom conservation of intron positions and massive, lineage-specific intron loss and gain in eukaryotic evolution. Current Biology 13: 1512–17 (2003).
Sverdlov AV, Csuros M, Rogozin IB, Koonin EV. A glimpse of a putative pre-intron phase of eukaryotic evolution. Trends in Genetics 23: 105–08 (2007).
核内线粒体序列Hazkani-Covo E, Zeller RM, Martin W. Molecular poltergeists: mitochondrial DNA copies (numts) in sequenced nuclear genomes. PLoS Genetics 6: e1000834 (2010).
Lane N. Plastids, genomes and the probability of gene transfer. Genome Biology and Evolution 3: 372–74 (2011).
自然选择抑制内含子的力量Lane N. Energetics and genetics across the prokaryote-eukaryote divide. Biology Direct 6: 35 (2011).
Lynch M, Richardson AO. The evolution of spliceosomal introns. Current Opinion in Genetics and Development 12: 701–10 (2002).
剪接和转译的速度冲突Cavalier-Smith T. Intron phylogeny: A new hypothesis. Trends in Genetics 7: 145–48 (1991).
Martin W, Koonin EV. Introns and the origin of nucleus–cytosol compartmentalization. Nature 440: 41–45 (2006).
核膜、核孔复合体与核仁的起源Mans BJ, Anantharaman V, Aravind L, Koonin EV. Comparative genomics, evolution and origins of the nuclear envelope and nuclear pore complex. Cell Cycle 3: 1612–37 (2004).
Martin W. A briefly argued case that mitochondria and plastids are descendants of endosymbionts, but that the nuclear compartment is not. Proceedings of the Royal Society B 266: 1387–95 (1999).
Martin W. Archaebacteria (Archaea) and the origin of the eukaryotic nucleus. Current Opinion in microbiology 8: 630–37 (2005).
McInerney JO, Martin WF, Koonin EV, Allen JF, Galperin MY, Lane N, Archibald JM, Embley TM. Planctomycetes and eukaryotes: A case of analogy not homology. BioEssays 33: 810–17 (2011).
Mercier R, Kawai Y, Errington J. Excess membrane synthesis drives a primitive mode of cell proliferation. Cell 152: 997–1007 (2013).
Staub E, Fiziev P, Rosenthal A, Hinzmann B. Insights into the evolution of the nucleolus by an analysis of its protein domain repertoire. BioEssays 26: 567–81 (2004)
有性生殖的演化Bell G. The Masterpiece of Nature: The Evolution and Genetics of Sexuality. University of California Press, Berkeley (1982).
Felsenstein J. The evolutionary advantage of recombination. Genetics 78: 737–56 (1974).
Hamilton WD. Sex versus non-sex versus parasite. Oikos 35: 282–90 (1980).
Lane N. Why sex is worth losing your head for. New Scientist 2712: 40–43 (2009).
Otto SP, Barton N. Selection for recombination in small populations. Evolution 55: 1921–31 (2001).
Partridge L, Hurst LD. Sex and conflict. Science 281: 2003–08 (1998).
Ridley M. Mendel’s Demon: Gene Justice and the Complexity of Life. Weidenfeld and Nicholson, London (2000).
Ridley M. The Red Queen: Sex and the Evolution of Human Nature. Penguin, London (1994).
细胞融合和染色体分离的可能起源Blackstone NW, Green DR. The evolution of a mechanism of cell suicide. BioEssays 21: 84–88 (1999).
Ebersbach G, Gerdes K. Plasmid segregation mechanisms. Annual Review Genetics 39: 453–79 (2005).
Errington J. L-form bacteria, cell walls and the origins of life. Open Biology 3: 120143 (2013).
两种性别Fisher RA. The Genetical Theory of Natural Selection. Clarendon Press, Oxford (1930).
Hoekstra RF. On the asymmetry of sex – evolution of mating types in isogamous populations. Journal of Theoretical Biology 98: 427–51 (1982).
Hurst LD, Hamilton WD. Cytoplasmic fusion and the nature of sexes. Proceedings of the Royal Society B 247: 189–94 (1992).
Hutson V, Law R. Four steps to two sexes. Proceedings Royal Society B 253: 43–51 (1993).
Parker GA, Smith VGF, Baker RR. The origin and evolution of gamete dimorphism and the male-female phenomenon. Journal of Theoretical Biology 36: 529–53 (1972).
线粒体的单亲遗传Birky CW. Uniparental inheritance of mitochondrial and chloroplast genes – mechanisms and evolution. Proceedings National Academy Sciences USA 92: 11331–38 (1995).
Cosmides LM, Tooby J. Cytoplasmic inheritance and intragenomic conflict. Journal of Theoretical Biology 89: 83–129 (1981).
Hadjivasiliou Z, Lane N, Seymour R, Pomiankowski A. Dynamics of mitochondrial inheritance in the evolution of binary mating types and two sexes. Proceedings Royal Society B 280: 20131920 (2013).
Hadjivasiliou Z, Pomiankowski A, Seymour R, Lane N. Selection for mitonuclear co-adaptation could favour the evolution of two sexes. Proceedings Royal Society B 279: 1865–72 (2012).
Lane N. Power, Sex, Suicide: Mitochondria and the Meaning of Life. Oxford University Press, Oxford (2005).
动物、植物和基础后生生物的线粒体突变速率Galtier N. The intriguing evolutionary dynamics of plant mitochondrial DNA. BMC Biology 9: 61 (2011).
Huang D, Meier R, Todd PA, Chou LM. Slow mitochondrial COI sequence evolution at the base of the metazoan tree and its implications for DNA barcoding. Journal of Molecular Evolution 66: 167–74 (2008).
Lane N. On the origin of barcodes. Nature 462: 272–74 (2009).
Linnane AW, Ozawa T, Marzuki S, Tanaka M. Lancet 333: 642–45 (1989).
Pesole G, Gissi C, De Chirico A, Saccone C. Nucleotide substitution rate of mammalian mitochondrial genomes. Journal of Molecular Evolution 48: 427–34 (1999).
种系-体细胞的差异起源Allen JF, de Paula WBM. Mitochondrial genome function and maternal inheritance. Biochemical Society Transactions 41: 1298–1304 (2013).
Allen JF. Separate sexes and the mitochondrial theory of ageing. Journal of Theoretical Biology 180: 135–40 (1996).
Buss L. The Evolution of Individuality. Princeton University Press, Princeton (1987).
Clark WR. Sex and the Origins of Death. Oxford University Press, New York (1997).
Radzvilavicius AL, Hadjivasiliou Z, Pomiankowski A, Lane N. Mitochondrial variation drives the evolution of sexes and the germline-soma distinction. MS in preparation (2015).
7 力量与荣耀 嵌合的呼吸链Allen JF. The function of genomes in bioenergetic organelles. Philosophical Transactions Royal Society B 358: 19–37 (2003).
Lane N. The costs of breathing. Science 334: 184–85 (2011).
Moser CC, Page CC, Dutton PL. Darwin at the molecular scale: selection and variance in electron tunnelling proteins including cytochrome c oxidase. Philosophical Transactions Royal Society B 361: 1295–1305 (2006).
Schatz G, Mason TL. The biosynthesis of mitochondrial proteins. Annual Review Biochemistry 43: 51–87 (1974).
Vinothkumar KR, Zhu J, Hirst J. Architecture of the mammalian respiratory complex I. Nature 515: 80–84 (2014).
杂种衰退、胞质杂合细胞与物种起源Barrientos A, Kenyon L, Moraes CT. Human xenomitochondrial cybrids. Cellular models of mitochondrial complex I deficiency. Journal of Biological Chemistry 273: 14210–17 (1998).
Blier PU, Dufresne F, Burton RS. Natural selection and the evolution of mtDNA-encoded peptides: evidence for intergenomic co-adaptation. Trends in Genetics 17: 400–406 (2001).
Burton RS, Barreto FS. A disproportionate role for mtDNA in Dobzhansky-Muller incompatibilities? Molecular Ecology 21: 4942–57 (2012).
Burton RS, Ellison CK, Harrison JS. The sorry state of F2 hybrids: consequences of rapid mitochondrial DNA evolution in allopatric populations. American Naturalist 168 Supplement 6: S14–24 (2006).
Gershoni M, Templeton AR, Mishmar D. Mitochondrial biogenesis as a major motive force of speciation. Bioessays 31: 642–50 (2009).
Lane N. On the origin of barcodes. Nature 462: 272–74 (2009).
线粒体对细胞凋亡的控制Hengartner MO. Death cycle and Swiss army knives. Nature 391: 441–42 (1998).
Koonin EV, Aravind L. Origin and evolution of eukaryotic apoptosis: the bacterial connection. Cell Death and Differentiation 9: 394–404 (2002).
Lane N. Origins of death. Nature 453: 583–85 (2008).
Zamzami N, Kroemer G. The mitochondrion in apoptosis: how pandora’s box opens. Nature Reviews Molecular Cell Biology 2: 67–71 (2001).
动物线粒体基因的快速演化与对环境的适应Bazin E, Glémin S, Galtier N. Population size dies not influence mitochondrial genetic diversity in animals. Science 312: 570–72 (2006).
Lane N. On the origin of barcodes. Nature 462: 272–74 (2009).
Nabholz B, Glémin S, Galtier N. The erratic mitochondrial clock: variations of mutation rate, not population size, affect mtDNA diversity across birds and mammals. BMC Evolutionary Biology 9: 54 (2009).
Wallace DC. Bioenergetics in human evolution and disease: implications for the origins of biological compolexity and the missing genetic variation of common diseases. Philosophical Transactions Royal Society B 368: 20120267 (2013).
对线粒体DNA的种系选择Fan W, Waymire KG, Narula N, et al. A mouse model of mitochondrial disease reveals germline selection against severe mtDNA mutations. Science 319: 958–62 (2008).
Stewart JB, Freyer C, Elson JL, Wredenberg A, Cansu Z, Trifunovic A, Larsson N-G. Strong purifying selection in transmission of mammalian mitochondrial DNA. PLoS Biology 6: e10 (2008).
霍尔丹法则Coyne JA, Orr HA. Speciation. Sinauer Associates, Sunderland MA (2004).
Haldane JBS. Sex ratio and unisexual sterility in hybrid animals. Journal of Genetics 12: 101–109 (1922).
Johnson NA. Haldane’s rule: the heterogametic sex. Nature Education 1: 58 (2008).
线粒体和代谢率对性别选择的影响Bogani D, Siggers P, Brixet R et al. Loss of mitogen-activated protein kinase kinase kinase 4 (MAP3K4) reveals a requirement for MAPK signalling in mouse sex determination. PLoS Biology 7: e1000196 (2009).
Mittwoch U. Sex determination. EMBO Reports 14: 588–92 (2013).
Mittwoch U. The elusive action of sex-determining genes: mitochondria to the rescue? Journal of Theoretical Biology 228: 359–65 (2004).
温度与代谢率Clarke A, Pörtner H-A. Termperature, metabolic power and the evolution of endothermy. Biological Reviews 85: 703–27 (2010).
线粒体疾病Lane N. Powerhouse of disease. Nature 440: 600–602 (2006).
Schon EA, DiMauro S, Hirano M. Human mitochondrial DNA: roles of inherited and somatic mutations. Nature Reviews Genetics 13: 878–90 (2012).
Wallace DC. A mitochondrial bioenergetic etiology of disease. Journal of Clinical Investigation 123: 1405–12 (2013).
Zeviani M, Carelli V. Mitochondrial disorders. Current Opinion in Neurology 20: 564–71 (2007).
细胞质雄性不育Chen L, Liu YG. Male sterility and fertility restoration in crops. Annual Review Plant Biology 65: 579–606 (2014).
Innocenti P, Morrow EH, Dowling DK. Experimental evidence supports a sex-specific selective sieve in mitochondrial genome evolution. Science 332: 845–48 (2011).
Sabar M, Gagliardi D, Balk J, Leaver CJ. ORFB is a subunit of F1FO-ATP synthase: insight into the basis of cytoplasmic male sterility in sunflower. EMBO Reports 4: 381–86 (2003).
鸟类中的霍尔丹法则Hill GE, Johnson JD. The mitonuclear compatibility hypothesis of sexual selection. Proceedings Royal Society B 280: 20131314 (2013).
Mittwoch U. Phenotypic manifestations during the development of the dominant and default gonads in mammals and birds. Journal of Experimental Zoology 281: 466–71 (1998).
飞行的要求Suarez RK. Oxygen and the upper limits to animal design and performance. Journal of Experimental Biology 201: 1065–72 (1998).
触发细胞凋亡的死亡门槛Lane N. Bioenergetic constraints on the evolution of complex life. Cold Spring Harbor Perspectives in Biology. doi: 10.1101/cshperspect.a015982 (2014).
Lane N. The costs of breathing. Science 334: 184–85 (2011).
人类早期隐性流产的发生率Van Blerkom J, Davis PW, Lee J. ATP content of human oocytes and developmental potential and outcome after in-vitro fertilization and embryo transfer. Human Reproduction 10: 415–24 (1995).
Zinaman MJ, O’Connor J, Clegg ED, Selevan SG, Brown CC. Estimates of human fertility and pregnancy loss. Fertility and Sterility 65: 503–509 (1996).
自由基老化理论Barja G. Updating the mitochondrial free-radical theory of aging: an integrated view, key aspects, and confounding concepts. Antioxidants and Redox Signalling 19: 1420–45 (2013).
Gerschman R, Gilbert DL, Nye SW, Dwyer P, Fenn WO. Oxygen poisoning and X irradiation: a mechanism in common. Science 119: 623–26 (1954).
Harmann D. Aging – a theory based on free-radical and radiation chemistry. Journal of Gerontology 11: 298–300 (1956).
Murphy MP. How mitochondria produce reactive oxygen species. Biochemical Journal 417: 1–13 (2009).
自由基老化理论的问题Bjelakovic G, Nikolova D, Gluud LL, Simonetti RG, Gluud C. Antioxidant supplements for prevention of mortality in healthy participants and patients with various diseases. Cochrane Database of Systematic Reviews doi: 10.1002/14651858.CD007176 (2008).
Gutteridge JMC, Halliwell B. Antioxidants: Molecules, medicines, and myths. Biochemical Biophysical Research Communications 393: 561–64 (2010).
Gnaiger E, Mendez G, Hand SC. High phosphorylation efficiency and depression of uncoupled respiration in mitochondria under hypoxia. Proceedings National Academy Sciences 97: 11080–85 (2000)
Moyer MW. The myth of antioxidants. Scientific American 308: 62–67 (2013).
自由基信号与衰老的关系Lane N. Mitonuclear match: optimizing fitness and fertility over generations drives ageing within generations. BioEssays 33: 860–69 (2011).
Moreno-Loshuertos R, Acin-Perez R, Fernandez-Silva P, Movilla N, Perez-Martos A, de Cordoba SR, Gallardo ME, Enriquez JA. Differences in reactive oxygen species production explain the phenotypes associated with common mouse mitochondrial DNA variants. Nature Genetics 38: 1261–68 (2006).
Sobek S, Rosa ID, Pommier Y, et al. Negative regulation of mitochondrial transcrioption by mitochondrial topoisomerase I. Nucleic Acids Research 41: 9848–57 (2013).
自由基与生命率理论的关系Barja G. Mitochondrial oxygen consumption and reactive oxygen species production are independently modulated: implications for aging studies. Rejuvenation Research 10: 215–24 (2007).
Boveris A, Chance B. Mitochondrial generation of hydrogen peroxide – general properties and effect of hyperbaric oxygen. Biochemical Journal 134: 707–16 (1973).
Pearl R. The Rate of Living. Being an Account of some Experimental Studies on the Biology of Life Duration. University of London Press, London (1928).
自由基与老年病Desler C, Marcker ML, Singh KK, Rasmussen LJ. The importance of mitochondrial DNA in aging and cancer. Journal of Aging Research 2011: 407536 (2011).
Halliwell B, Gutteridge JMC. Free Radicals in Biology and Medicine. 4th edition. Oxford University Press, Oxford (2007).
He Y, Wu J, Dressman DC, et al. Heteroplasmic mitochondrial DNA mutations in normal and tumour cells. Nature 464: 610–14 (2010).
Lagouge M, Larsson N-G. The role of mitochondrial DNA mutations and free radicals in disease and ageing. Journal of Internal Medicine 273: 529–43 (2013).
Lane N. A unifying view of aging and disease: the double agent theory. Journal of Theoretical Biology 225: 531–40 (2003).
Moncada S, Higgs AE, Colombo SL. Fulfilling the metabolic requirements for cell proliferation. Biochemical Journal 446: 1–7 (2012).
有氧代谢能力与寿命Bennett AF, Ruben JA. Endothermy and activity in vertebrates. Science 206: 649–654 (1979).
Bramble DM, Lieberman DE. Endurance running and the evolution of Homo. Nature 432: 345–52 (2004).
Koch LG Kemi OJ, Qi N, et al. Intrinsic aerobic capacity sets a divide for aging and longevity. Circulation Research 109: 1162–72 (2011).
Wisløff U, Najjar SM, Ellingsen O, et al. Cardiovascular risk factors emerge after artificial selection for low aerobic capacity. Science 307: 418–420 (2005).
后记 来自深海 真核生物还是原核生物?Wujek DE. Intracellular bacteria in the blue-green-alga Pleurocapsa minor. Transactions American Microscopical Society 98: 143–45 (1979).
Yamaguchi M, Mori Y, Kozuka Y, et al. Prokaryote or eukaryote? A unique organism from the deep sea. Journal of Electron Microscopy 61: 423–31 (2012).